A Technique for Remote Sensing the Atmospheric Temperature and Pressure, Based on Fabry — Perot Interferometry of Rotational Raman Scattering Spectrum

  • I. D. Ivanova
  • L. L. Gurdev
  • V. M. Mitev
Conference paper
Part of the NATO ASI Series book series (volume 24)

Abstract

The methods for laser remote sensing of the atmospheric temperature are based on the temperature dependence of the interaction of the light with the atmospheric gases. A group of methods is based on the temperature dependence of some characteristics of different type elastic and nonelastic scattering, e.g. the line bandwidth of the resonance (Blamont et aI. 1972) or Rayleigh (Fiocco et al. 1971) scattering, the envelope of the rotational Raman scattering (RRS) spectrum (Cooney 1972, Kobayasi et al. 1974, Cohen et al. 1976, Arshinov et al. 1983, 1988, Mitev and Nitsolov 1983, Kobayashi and Taira 1990) or the shape of the RRS spectral lines (Armstrong 1974, 1975), the shape of the Rayleigh-Brillouin scattering spectrum (Shimizu et al. 1986), etc. The temperature dependance of the light absorption in the atmosphere is also used as a basis of some DIAL methods to measure the atmospheric temperature and pressure (Mason 1975, Kalshoven et al. 1981, Korb et al. 1989).

Keywords

Anisotropy Radar Remote Sensing Lidar Dial 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong, R. L., 1974, Analysis of Fabry-Perot interferograms of periodic spectra. Journal of the Optical Society of America, 64, 871–876.CrossRefGoogle Scholar
  2. Armstrong, R. L., 1975, Rotational Raman interferometric technique to measure gas temperature. Applied Optics , 14, 383–387.CrossRefGoogle Scholar
  3. Arshinov, Y. F., Bobrovnikov, S. M., Zuev, V. E., and Mitev, V. M., 1983, Atmospheric- temperature measurements using a pure rotational Raman lidar. Applied Optics, 22, 2984–1990.CrossRefGoogle Scholar
  4. Arshinov, Y. F., Bobrovnikov, S. M., Volkov, Zuev, V. E., and Shumskii, V. K., 1988, Abstracts of the 14th ILRC Italy, pp. 63.Google Scholar
  5. Blamont, J. E., Chanin, M. L., and Megie, G., 1972, Vertical distribution and temperature profile of the night time atmospheric sodium layer obtained by laser backscatter. Annales de Geophysique , 28, 833–838.Google Scholar
  6. Cohen, A., Cooney, J. A., and Geller, K. N. 1976, Atmospheric temperature profiles from lidar measurements of fotational Raman and elastic scattering. Applied Optics , 15, 2696–2901.Google Scholar
  7. Cooney, J. A., 1972, Measurement of atmospheric temperature profiles by Raman backscatter. Journal of Applied Meteorology, 11, 108–112.CrossRefGoogle Scholar
  8. Fiocco, C., Benedetti-Michelangeli, G., Maischberger, K., and Madonna, E., 1971, Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar. Nature, Physical Science , 229, 78–79.Google Scholar
  9. Kalshoven, J. E., Jr., Korb, C. L., Schwemmer, G. K., and Dombrowski, M., Laser remote- sensing of atmospheric-temperature by observing resonant absorption of oxygen. Applied Optics, 20, 1967–1971.Google Scholar
  10. Kobayasi, T., and Shimisu, H., and Inaba, H., 1974, Abstracts of the 6ht ILRC, Japan, pp. 49.Google Scholar
  11. Kobayashi, T., and Taira, T., Abstracts of the 15th ILRC, USSR, pp. 290.Google Scholar
  12. Korb, C., Schwemmer, G. K., Dombrowski, M., and Weng, CH. Y., 1989, Airborne and ground based lidar measurements of the atmospheric-pressure profile. Applied Optics 28, 3015–3020.CrossRefGoogle Scholar
  13. Mason, J. B., 1975, Ladar measurement of temperature: A new approach. Applied Optics , 14, 76–78.Google Scholar
  14. Mitev, V. M., and Nitsolov, S. L., 1983, Improved procedure for Raman lidar measurements of the atmospheric temperature. Bulgarian Journal of Physics, 10, 86–97.Google Scholar
  15. Penney, C. M., St. Peters, R. L., and Lapp, M., 1974, Absolute rotational Raman cross sections for O2, and CO2 Journal of the Optics Society of America , 64, 712–716.CrossRefGoogle Scholar
  16. Schmidt, W., 1990, Abstracts of the 15th ILRC, part II, USSR, pp. 362.Google Scholar
  17. Shimizu, H., Noguchi, K., and She Chiao-Yao, 1986, Atmospheric-temperature measurement by a high spectral resolution lidar. Applied Optics, 5, 1460–1466.CrossRefGoogle Scholar
  18. Wang, J., Drayson, S. R., and Hays, P. B., 1989, Atmospheric temperature sensing with a multiorder Fabry-Perot interferometer. Applied Optics , 28, 5038–5046.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • I. D. Ivanova
  • L. L. Gurdev
  • V. M. Mitev

There are no affiliations available

Personalised recommendations