A Link Between the Antioxidant Defense System and Calcium: A Proposal for the Biochemical Function of Bcl-2

  • G. W. Bornkamm
  • C. Richter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 194)


Tumorigenesis has long been viewed as a problem of perturbed regulation of cell proliferation. It has, however, become increasingly apparent during the last years that disturbance of the equilibrium between cell survival and cell death may equally contribute to the development of a tumor. Elimination of cells has first been described by morphologists as an important physiological process in developmental biology for which the term programmed cell death (PCD) or apoptosis has been coined, and has since then been recognized as a generally important phenomenon in many different areas of biology (Wyllie et al., 1980). Apart from morphological criteria, apoptosis is only poorly defined and discrimination from other forms of cell death is often difficult. Regardless of the definition of apoptosis, it is apparent that susceptibility versus resistance to toxic conditions or death inducing signals is an extremely important property of a cell determining its fate in its environmental context.


Release Channel Permeability Transition Pore Pyridine Nucleotide Inositol Trisphosphate Important Physiological Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alnemri, E.S., Robertson, N.M., Fernandes, T.F., Croce, C.M. and Litwack, G. (1992) Overexpressed full-length human BCL2 extends the survival of baculovirus-infected Sf9 insect cells. Proc. Natl. Acad. Sci. USA 89: 7295–7299PubMedCrossRefGoogle Scholar
  2. Baffy, G., Miyashita, T., Williamson, J.R., Reed, J.C. (1993) Apoptosis Induced by Withdrawal of Interleukin-3 (IL-3) from an IL-3-dependent Hematopoietic Cell Line Is Associated with Repartitioning of Intracellular Calcium and Is Blocked by Enforced Bcl-2 Oncoprotein Production. J. Biol. Chem. 268: 6511–6519PubMedGoogle Scholar
  3. Broekemeier, KM, Dempsey, ME and Pfeiffer, DR. (1989) Cyclosporine A is a potent inhibitor of the inner membrane permeability transition in liver mitochondria. J Biol Chem 264: 7826–7830PubMedGoogle Scholar
  4. Carafoli, E. (1987) Intracellular Ca2+ homeostasis. Ann. Rev. Biochem. 56: 395–433PubMedCrossRefGoogle Scholar
  5. Chen-Levy, Z., Nourse, J. and Cleary, M. (1989) The bcl-2 Candidate Proto-Oncogene Product Is a 24-Kilodalton Integral-Membrane Protein Highly Expressed in Lymphoid Cell Lines and Lymphomas Carrying the t(14;18) Translocation. Mol. Cell. Biol. 9: 701’710PubMedGoogle Scholar
  6. Clapper, D.L., Walseth, T.F., Dargie, P.J. and Lee, H.C. (1987) Pyridine Nucleotide Metabolites Stimulate Calcium Release from Sea Urchin Egg Microsomes Desensitized to Inositol Trisphosphate. J. Biol. Chem. 262: 9561–9568PubMedGoogle Scholar
  7. Crompton, M., Ellinger, H. and Costa, A. (1988) Inhibition by cyclosporin A of a Ca2+-dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress. Biochem. J. 255: 357–360PubMedGoogle Scholar
  8. Cuende, E., Alés-Martinez, J.E., Ding, L., Gónzalez-Garcia, M., Martinez-A, C. and Nunez, G. (1993) Programmed cell death by bcl-2 dependent and independent mechanisms in B lymphoma cells. EMBO J. 12: 1555–1560Google Scholar
  9. Fanidi, A., Harrington, E.A. and Evan, G.I. (1992) Cooperative interaction between c-myc and bcl-2 proto-oncogenes. Nature 359: 554–556PubMedCrossRefGoogle Scholar
  10. Frei, B. and Richter, C. (1988) Mono(ADP-ribosylation) in Rat Liver Mitochondria. Biochemistry 27: 529–535PubMedCrossRefGoogle Scholar
  11. Galli, G. and Fratelli, M. (1993) Activation of Apoptosis by Serum Deprivation in a Teratocarcinoma Cell Line: Inhibition by L-Acetylcarnitine. Exp. Cell Res. 204: 54–60PubMedCrossRefGoogle Scholar
  12. Gogvadze, V. and Richter, C. (1993) Cyclosporine A protects mitochondria in an in vitro model of hypoxia/reperfiision injury. FEBS Lett. 333: 334–338.PubMedCrossRefGoogle Scholar
  13. Gunter, T.E. and Pfeiffer, D.R. (1990) Mechanisms by which mitochondria transport calcium. Am. J. Physiol. C755–786.Google Scholar
  14. Hennet, T., Bertoni, G., Richter, C. and Peterhans, E. (1993a) Expression of BCL-2 Protein Enhances the Survival of Mouse Fibrosarcoid Cells in Tumor Necrosis Factor-mediated Cytotoxicity. Cancer Res. 53: 1456–1460PubMedGoogle Scholar
  15. Hennet, T., Richter, C. and Peterhans, E. (1993b) Tumour necrosis factor-a induces superoxide anion generation in mitochondria of L929 cells. Biochem. J. 289: 587–592PubMedGoogle Scholar
  16. Hockenbery, D.M., Nunez, G., Milliman, C., Schreiber, R.D. and Korsmeyer, S.J. (1990) Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348: 334–336.PubMedCrossRefGoogle Scholar
  17. Hockenbery, D.M., Oltval, Z.N., Yin, Y.M., Milliman, C.L., Korsmeyer, S.J. (1993) Bcl-2 Functions in an Antioxidant Pathway to Prevent Apoptosis. Cell 75: 241–251PubMedCrossRefGoogle Scholar
  18. Itoh, N., Tsujimoto, Y., and Nagata, S. (1993) Effect of bcl-2 on Fas Antigen-Mediated Cell Death. J. Immunol. 151: 621–627PubMedGoogle Scholar
  19. Kane, D.J., Sarafian, T.A., Anton, R., Hahn, H., Gralia, E.B., Valentine, J.S., Örd, T., and Bredesen, D.E. (1993) Bcl-2 Inhibition of Neural Death: Decreased Generation of Reactive Oxygen Species. Science 262: 1274–1277PubMedCrossRefGoogle Scholar
  20. Korsmeyer, S.J. (1992) Bcl-2 initiates a new category of oncogenes: regulators of cell death. Blood 80: 879–886PubMedGoogle Scholar
  21. Koshiyama, H., Lee, H.C. and Tashjian, A.H. (1991) Novel Mechanism of Intracellular Calcium Re-lease in Pituitary Cells. J. Biol. Chem. 266: 16985–16988PubMedGoogle Scholar
  22. Lee, H.C., Walseth, T.F., Bratt, G.T., Hayes, R.N. and Clapper, D.L. (1989) Structural Determina¬tion of a Cyclic Metabolite of NAD+ with Intracellular Ca2+-mobilizing Activity. J. Biol. Chem. 264: 1608–1615PubMedGoogle Scholar
  23. Lehninger, A.L., Vercesi, A. and Bababunmi, E.A. (1978) Regulation of Ca2+ release from mito-chondria by the oxidation-reduction state of pyridine nucleotides. Proc. Natl. Acad. Sci. USA 75: 1690–1694PubMedCrossRefGoogle Scholar
  24. Lötscher, H.R., Winterhalter, K.H., Carafoli, E., Richter, C. (1979) Hydroperoxides can modulate the redox state of pyridine nucleotides and the calcium balance in rat liver mitochondria. Proc. Natl. Acad. Sci. USA 76: 4340–4344PubMedCrossRefGoogle Scholar
  25. Lötscher, H.R., Winterhalter, K.H., Carafoli, E. and Richter, C. (1980) Hydroperoxide-induced Loss of Pyridine Nucleotides and Release of Calcium from Rat Liver Mitochondria. J. Biol. Chem. 255: 9325–9330PubMedGoogle Scholar
  26. Malavasi, F., Funaro, A., Roggero, S., Horenstein, A., Calosso, L. and Mehta, K. (1994) Human CD38: a glycoprotein in search of a function. Immunology Today 15: 95–97PubMedCrossRefGoogle Scholar
  27. McDonnell, T.J., Deane, N., Platt, F.M., Nunez, G., Jaeger, U., McKearn, J.P. and Korsmeyer, S.J. (1989) bcl-2-immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation. Cell 57: 79–88Google Scholar
  28. McDonnell, T.J. and Korsmeyer, S.J. (1991) Progression from lymphoid hyperplasia to high-grade malignant lymphoma in mice transgenic for the t(14;18). Nature 349: 254–256 Meszaros, L.G., Bäk, J. and Chu, A. (1993) Cyclic ADP-ribose as an endogenous regulator of the non-skeletal type ryanodine receptor Ca2+ channel. Nature 364: 76–79Google Scholar
  29. Monaghan, P., Robertson, D., Amos, T.A.S., Dyer, U.S., Mason, D.Y. and Greaves, M.F. (1992) Ultrastructural Localization ofBCL-2 Protein. J. Histochem. Cytochem. 40: 1819–1825PubMedCrossRefGoogle Scholar
  30. Orrenius, S., McConkey, D.J., Bellomo, G. and Nicotera, P. (1989) Role of Ca2+ in toxic cell killing. Trends Pharmacol. Sci. 10: 281–285PubMedCrossRefGoogle Scholar
  31. Richter, C., Theus, M. and Schlegel, J. (1990) Cyclosporine A Inhibits Mitochondrial Pyridine Nucleotide Hydrolysis and Calcium Release. Biochem. Pharmacol. 40: 779–782PubMedCrossRefGoogle Scholar
  32. Richter, C. and Kass, G.E.N. (1991) Oxidative stress in mitochondria: its relationship to cellular Ca2+ homeostasis, cell death, proliferation and differentiation. Chem Biol Interact 77: 1–23PubMedCrossRefGoogle Scholar
  33. Richter, C. (1992) Mitochondrial calcium transport. In L. Ernster (Ed.) Molecular Michanisms in Bioenergetics, Elsevier Science Publishers, 349–358Google Scholar
  34. Schlegel, J., Schweizer, M. and Richter, C. (1992) “Pore” formation is not required for the hydroperoxide-induced Ca2+ release from rat liver mitochondria. Biochem. J. 285: 65–69Google Scholar
  35. Schulze-Osthoff, K., Bakker, A.C., Vanhaesebroeck, B., Beyaert, R., Jacob, W.A. and Fiers, W. (1992) Cytotoxic Activity of Tumor Necrosis Factor Is Mediated by Early Damage of Mitochondrial Functions. J. Biol. Chem. 267: 5317–5323PubMedGoogle Scholar
  36. Strasser, A., Harris, A.W. and Cory, S. (1991) bcl-2 Transgene Inhibits T Cell Death and Perturbs Thymic Self-Censorship. Cell 67: 889–899Google Scholar
  37. Tsujimoto, Y., Finger, L.R., Yunis, J., Nowell, P.C. and Croce, C.M. (1984) Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science 226, 1097–1099PubMedCrossRefGoogle Scholar
  38. Vaux, D.L., Cory, S. and Adams, J.M. (1988) bcl-2 gene promotes haemopoietic cell survival and co-operates with c-myc to immortalize pre-B cells. Nature 335: 440–442Google Scholar
  39. Vaux, D.L. (1993) Toward an understanding of the molecular mechanisms of physiological cell death. Proc. Natl. Acad. Sci. USA 90: 786–789PubMedCrossRefGoogle Scholar
  40. Vaux, D.L., Haecker, G., and Strasser, A. (1994) An Evolutionary Perspective on Apoptosis. Cell 76: 777–779PubMedCrossRefGoogle Scholar
  41. Veis, D.J., Sorenson, C.M., Shutter, J.R. and Korsmeyer, S.J. (1993) Bcl-2-Deficient Mice Demonstrate Fulminant Lymphoid Apoptosis, Polycystic Kidneys, and Hypopigmented Hair. Cell 75: 229–240PubMedCrossRefGoogle Scholar
  42. Wang, Y., Szekely, L., Okan, I., Klein, G. and Wiman, K.G. (1993) Wild-type p53-triggered apoptosis is inhibited by bcl-2 in a v-myc-induced T-cell lymphoma line. Oncogene 8: 3427–3431PubMedGoogle Scholar
  43. Walton, M.I., Whysong, D., O’Connor, P.M., Hockenbery, D., Korsmeyer, S.J. and Kohn, K.W. (1993) Constitutive Expression of Human Bcl-2 Modulates Nitrogen Mustard and Camptothecin Induced Apoptosis. Cancer Research 53: 1853–1861PubMedGoogle Scholar
  44. Wong, G.H.W., Elwell, J.H., Oberley, L.W., Goeddel, D.V. (1989) Manganous Superoxide Dismutase Is Essential for Cellular Resistance to Cytotoxicity of Tumor Necrosis Factor. Cell 58: 923–931PubMedCrossRefGoogle Scholar
  45. Wyllie, A.H., Kerr, J.F.R. and Currie, A.R. (1980) Cell death: the significance of apoptosis. Int. Rev. Cytol. 68: 251–306PubMedCrossRefGoogle Scholar
  46. Zhong, L.T., Sarafian, T., Kane, D.J., Charles, A.C., Mah, S.P., Edwards, R.H. and Bredesen, D.E. (1993) bcl-2 inhibits death of central neural cells induced by multiple agents. Proc. Natl. Acad. Sci. USA 90: 4533–4537Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • G. W. Bornkamm
    • 1
  • C. Richter
    • 2
  1. 1.Institut für Klinische Molekularbiologie und TumorgenetikHämatologikum der GSFMünchenGermany
  2. 2.Laboratorium für Biochemie IETHZürichSwitzerland

Personalised recommendations