A technique for estimating long-term variations of solar total irradiance: Preliminary estimates based on observations of the Sun and solar-type stars

  • W. H. Soon
  • S. L. Baliunas
  • Q. Zhang
Conference paper
Part of the NATO ASI Series book series (volume 25)

Summary

We analyze concurrent observations of Ca II H and K chromospheric emission fluxes (which are associated with the disk-averaged surface magnetic fluxes) and variability in the b and y bands of the Strömgren uvby photometric system (which are associated with the integrated total irradiance or brightness variation) in a group of stars, including the Sun. Those solar-type stars have a narrow range of mass and age, and similar observed activity variability. Their combined variability over several years reveals a range for the ratio of brightness change to chromospheric activity amplitude. We assume that the scatter in the ratios of brightness change to chromospheric activity change measured over a decade represents a distribution of variability that is intrinsic to the activity of a typical solar-type star (i.e., the Sun) over centuries. Under that assumption, we infer an empirical bound of possible solar brightness variations over centuries (Zhang et al., 1994). The estimated increase in solar brightness accompanying the net increase in average activity from the Maunder Minimum interval (ca. A.D. 1660–1710) to the decade of the 1980’s ranges from as low as 0.2 % to as high as 0.7 %; the indeterminacy of the brightness-chromospheric activity change ratio produces the large range of estimates. In addition, we estimate the timing of possible solar brightness change over the past three centuries. We also discuss the observed relation between the activity cycle amplitude and the activity cycle length, P cyc , for the Sun and solar-type stars. The activity cycle amplitude is inversely related to the parameterized quantity, (P cyc /P rot )2, where P rot is the rotation period.

Keywords

Convection Petroleum Kelly 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baliunas, S. L. (1991) The past, present and future of solar magnetism: Stellar magnetic activity. In The Sun in Time (eds. C. P. Sonett, M. S. Giampapa, and M. S. Matthews) The University of Arizona Press, Tucson: 809–831Google Scholar
  2. Baliunas, S. L. and Jastrow, R. (1990) Evidence for long-term brightness changes of solar-type stars. Nature 348: 520–523CrossRefGoogle Scholar
  3. Balthasar, H., Vázquez, M., and Wöhl, H. (1986) Differential rotation of sunspot groups in the period from 1874 through 1976 and changes of the rotation velocity within the solar cycle. Astron. Astrophys. 155: 87–98Google Scholar
  4. Eddy, J. A. (1976) The Maunder Minimum. Science 192: 1189–1190CrossRefGoogle Scholar
  5. Foukal, P. and Lean, J. (1990) An empirical model of total solar irradiance variation between 1874 and 1988. Science 247: 556–558CrossRefGoogle Scholar
  6. Friis-Christensen, E. and LASSEN, K. (1991) Length of the solar cycle: An indicator of solar activity closely associated with climate. Science 254: 698–700CrossRefGoogle Scholar
  7. FRÖHLICH, C. (1987) Variability of the solar constant on time scales of minutes to years. J. Geophys. Res. 92: 796–800CrossRefGoogle Scholar
  8. Hansen, J. and Lebedeff, S. (1987) Global trends of measured surface air temperature. J. Geophys. Res. 92: 13345–13372CrossRefGoogle Scholar
  9. HOYT, D. V. and Schatten, K. H. (1993) A discussion of plausible solar irradiance variations, 1700–1992. J. Geophys. Res. 98: 18895–18906CrossRefGoogle Scholar
  10. HUDSON, H. S. (1988) Observed variability of the solar luminosity. Ann. Rev. Astron. Astrophys. 26: 473–507CrossRefGoogle Scholar
  11. JENNINGS, R. L. (1993) A nonlinear model of the solar dynamo. Solar Phys. 143: 1–17CrossRefGoogle Scholar
  12. Kelly, P. M. and WIGLEY, T. M. L. (1992) Solar cycle length, greenhouse forcing and global climate. Nature 360: 328–330CrossRefGoogle Scholar
  13. Kuhn, J. R., Libbrecht, K. G., and Dicke, R. H. (1988) The surface temperature of the sun and changes in the solar constant. Science 242: 908–911Google Scholar
  14. LEAN, J., Skumanich, A., and White, O. (1992) Estimating the sun’s radiative output during the Maunder Minimum. Geophys. Research Let. 19: 1591–1594CrossRefGoogle Scholar
  15. Lockwood, G. W., Skiff, B. A., Baliunas, S. L., and Radick, R. R. (1992) Longterm solar brightness changes estimated from a survey of Sun-like stars. Nature 360: 653–655CrossRefGoogle Scholar
  16. Nesme-Ribes, E., Ferreira, E. N., Sadourny, R., Treut, H. Le., and Li, Z. X. (1993) Solar dynamics and its impact on solar irradiance and the terrestrial climate. J. Geophys. Res. 98: 18923–18936CrossRefGoogle Scholar
  17. Noyes, R. W., Hartmann, L. W., Baliunas, S. L., Duncan, D. K., and Vaughan, A. H. (1984) Rotation, convection and magnetic activity in the lower main-sequence stars. Astrophys. J. 279: 763–777CrossRefGoogle Scholar
  18. Radick, R. R., Lockwood, G. W., and Baliunas, S. L. (1990) Stellar activity and brightness variations: A glimpse at the Sun’s history. Science 247: 39–44CrossRefGoogle Scholar
  19. Reid, G. C. (1991) Solar total irradiance variations and the global sea surface temperature record. J. Geophys. Res. 96: 2835–2844CrossRefGoogle Scholar
  20. Schlesinger, M. E. and Ramankutty, N. (1992) Implications for global warming of intercycle solar irradiance variation. Nature 360: 330–333CrossRefGoogle Scholar
  21. Soderblom, D. R., DUNCAN, D. K., and JOHNSON, D. R. (1991) The chromospheric emission-age relation for stars of the lower main sequence and its implications for the star formation rate. Astrophys. J. 375: 722–739CrossRefGoogle Scholar
  22. Soon, W. H., Baliunas, S. L., and ZHANG, Q. (1993) An interpretation of cycle periods of stellar chromospheric activity. Astrophys. J. 414: L33–L36CrossRefGoogle Scholar
  23. WALDMEIER, M. (1961) The Sunspot Activity in the Years 1610–1960, Schulthess, ZurichGoogle Scholar
  24. WHITE, O. R. and Livingston, W. C. (1981) Solar luminosity variation. III. Calcium K variation from solar minimum to maximum in Cycle 21. Astrophys. J. 249: 798–816CrossRefGoogle Scholar
  25. White, O. R., Skumanich, A., Lean, J., Livingston, W. C., and Keil, S. L. (1992) The Sun in noncycling state. Publ. Astron. Soc. Pacific 104: 1139–1143CrossRefGoogle Scholar
  26. WILLSON, R. C. and Hudson, H. S. (1991) The Sun’s luminosity over a complete cycle. Nature 351: 42–44CrossRefGoogle Scholar
  27. Zhang, Q., Soon, W. H., Baliunas, S. L., Lockwood, G. W., Skiff, B. A., and RADICK, R. R. (1994) A method of determining possible brightness variations of the Sun in past centuries from observations of solar-type stars. Astrophys. J. 427: L111–L114CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • W. H. Soon
    • 1
  • S. L. Baliunas
    • 1
  • Q. Zhang
    • 1
  1. 1.Harvard-Smithsonian Center for AstrophysicsCambridgeUK

Personalised recommendations