Skip to main content

Part of the book series: NATO ASI Series ((ASII,volume 25))

Abstract

To reduce uncertainties in anthropogenically forced global change superimposed on natural climate variability, knowledge of changing solar radiative output, a primary natural forcing agent, is essential. Estimates of past solar forcing are derived from radiometric measurements and empirical models of contemporary solar irradiance variations. Implications for global change are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baliunas, S., and Jastrow, R. (1990). Evidence for long-term brightness changes of solar-like stars, Nature, 348: 520–523

    Article  Google Scholar 

  • Beer, J., Raisbeck, G. M., and Yiou, F. (1991). Time variation of 10Be and solar activity. In The Sun in Time, eds. C. P. Sonett, M. Giampapa and M. S. Matthews, The University of Arizona Press, Tucson: 343–359

    Google Scholar 

  • Brandt, P. N., Schmidt, W., and Steinegger, M. (1990). On the umbra-penumbra ratio of sunspots, Solar Phys., 129: 191–194

    Article  Google Scholar 

  • Damon, P. E., and Sonett, C. P. (1991). Solar and terrestrial components of the 14C variation spectrum. In The Sun in Time, eds. C. P. Sonett, M. Giampapa and M. S. Matthews, University of Arizona Press, Tucson: 360–388

    Google Scholar 

  • Eddy, J. A. (1976). The Maunder minimum, Science, 192: 1189–1202

    Article  CAS  Google Scholar 

  • Foukal, P., and Lean, J. (1988). Magnetic modulation of solar luminosity by photospheric activity, Astrophys. J., 328: 347–357

    Article  CAS  Google Scholar 

  • Foukal, P., and Lean, J. (1990). An empirical model of total solar irradiance variation between 1874 and 1988, Science, 247: 505–604

    Article  Google Scholar 

  • Friis-Christensen, E., and Lassen, K. (1991). Length of the solar cycle: An indicator of solar activity closely associated with climate, Science, 254: 698–700

    Article  CAS  Google Scholar 

  • Fröhlich, C. (1993). Irradiance observations of the Sun, IAU Colloquium No. 143, June 20–25, Boulder, CO

    Google Scholar 

  • Hansen, J. E., and Lacis, A. A. (1990). Sun and dust versus greenhouse gases: An assessment of their relative roles in global climate change, Nature, 346: 713–719

    Article  CAS  Google Scholar 

  • Hansen, J., Lacis, A., Ruedy, R., Sato, M., and Wilson, H. (1993). How sensitive is the world’s climate?, National Geographic Research and Exploration 9(2): 142–158

    Google Scholar 

  • Hood, L. L., and McCormack, J. P. (1992). Components of interannual ozone change based on Nimbus 7 TOMS data, Geophys. Res. Lett., 19: 2309–2312

    Article  CAS  Google Scholar 

  • Hood, L. L., Jirokowic, J. L., and McCormack, J. P. (1993). Quasi-decadal variability of the stratosphere: influence of solar-term solar ultraviolet variations, J. Atmos. Sci., 50: 3941–3958

    Article  Google Scholar 

  • Hoyt, D. V., and Schatten, K. H. (1993). A discussion of plausible solar irradiance variations, 1700–1992, J. Geophys. Res., 98: 18895–18906

    Article  Google Scholar 

  • Hoyt, D. V., Kyle, H. L., Hickey, J. R., and Maschhoff, R. M. (1992). The Nimbus 7 solar total irradiance: A new algorithm for its derivation, J. Geophys. Res., 97: 51–63

    Article  Google Scholar 

  • Hudson, H. S., Silva, S., Woodard. M., and Willson, R. C. (1982). The effects of sunspots on solar irradiance, Solar Phys., 76: 211–219

    Google Scholar 

  • Kelly, P. M., and Wigley, T. M. L. (1992). Solar cycle length, greenhouse forcing and global climate, Nature, 360: 328–330

    Article  Google Scholar 

  • Kuhn, J. R., and Libbrecht, K. G. (1991). Nonfacular solar luminosity variations, Astrophys. J., 380: L35–L37

    Article  Google Scholar 

  • Labitzke, K., and van Loon, H. (1993). Some recent studies of probable connections between solar and atmospheric variability, Ann. Geophysicae, 11: 1084–1094

    Google Scholar 

  • Lacis, A. A., Wuebbles, D. J., and Logan, J. A. (1990). Radiative forcing of climate by changes in the vertical distribution of ozone, J. Geophys. Res., 95: 9971–9981

    Article  Google Scholar 

  • Lean, J. (1989). Contribution of ultraviolet irradiance variations to changes in the Sun’s total irradiance, Science, 244: 197–200

    Article  CAS  Google Scholar 

  • Lean, J. (1991). Variations in the Sun’s Radiative Output, Rev. Geophys., 29: 505–535

    Article  Google Scholar 

  • Lean, J. (1992). The effect of surface inhomogeneities on total solar irradiance. In Surface Inhomogeneities on Late-Type Stars, eds. P. B. Bryne and D. J. Mullan, Lecture Notes in Physics, 397, Springer-Verlag: 167–180

    Chapter  Google Scholar 

  • Lean, J., and Rind, D. (1994). Solar variability: Implications for global change, Eos, Transactions, American Geophysical Union, 75: 1

    Article  Google Scholar 

  • Lean, J., Skumanich, A., and White, O. (1992). Estimating the Sun’s radiative output during the Maunder Minimum, Geophys. Res. Lett., 19: 1591–1594

    Article  Google Scholar 

  • London, J., Rottman, G. J., Woods, T. N., and Wu, F. (1993). Time variations of solar UV irradiance as measured by the SOLSTICE (UARS) instrument, Geophys. Res. Lett., 20: 1315–1318

    Article  Google Scholar 

  • McHargue, L. R., and Damon, P. E. (1991). The global Beryllium 10 cycle, Rev. Geophys., 29: 141–158

    Article  Google Scholar 

  • Nesme-Ribes, E., Ferreira, E. N., Sadourny, R., Le Treut, H., and Li, Z. X. (1993). Solar dynamics and its impact on solar irradiance and the terrestrial climate, J. Geophys. Res., 98: 18923–18935

    Article  Google Scholar 

  • Reid, G. (1991). Solar total irradiance variations and the global sea surface temperature record, J. Geophys. Res., 96: 2835–2844

    Article  Google Scholar 

  • Rind, D., and Overpeck, J. (1993). Hypothesized causes of decadal-to-century climate variability: climate model results, Quat. Sci. Rev., 12: 357–374

    Article  Google Scholar 

  • Romero, J., Wehrli, C., and Fröhlich, C. (1994). Solar total irradiance variability from SOVA 2 onboard EURECA, Solar Phys., 152: in press

    Google Scholar 

  • Schlesinger, M. E., and Ramankutty, N. (1992). Implications for global warming of intercycle solar irradiance variations, Nature, 360: 330–333

    Article  Google Scholar 

  • Skumanich, A., Smythe, C., and Frazier, E. N. (1975). On the statistical description of inhomogeneities in the quiet solar atmosphere. I. Linear regression analysis and absolute calibration of multichannel observations of the Ca+ emission network, Astrophys. J., 200: 747–764

    Article  CAS  Google Scholar 

  • Sofia, S., Oster, L., and Schatten, K. (1982). Solar irradiance modulation by active regions during 1980, Solar Phys., 80: 87–98

    Article  Google Scholar 

  • Spruit, H. (1994). Theories of radius and luminosity variations. This volume

    Google Scholar 

  • Stolarski, R. S., Bloomfield, P., McPeters, R. D., and Herman, J. R. (1991). Total ozone trends deduced from Nimbus-7 TOMS data, Geophys. Res. Lett., 18: 1015–1018

    Article  CAS  Google Scholar 

  • Stuiver, M., and Reimer, P. J. (1993). Extended 14C database and revised CALIB radiocarbon calibration program, Radiocarbon, 35: 215–230

    Google Scholar 

  • White, O. R., Skumanich, A., Lean, J., Livingston, W. C., and Keil, S. L. (1992). The Sun in a non-cycling state, Publ. Astronom. Soc. Pac., 104: 1139–1143

    Article  Google Scholar 

  • Wigley, T. M. L., and Kelly, P. M. (1990). Holocene climatic change, 14C wiggles and variations in solar irradiance, in The Earth’s Climate and Variability of the Sun over Recent Millennia: Geophysical, Astronomical and Archaeological Aspects, Phil. Trans. R. Soc. Lond. A, 330: 547–560

    Article  Google Scholar 

  • Willson, R. C., and Hudson, H. S. (1991). A solar cycle of measured and modeled total irradiance, Nature, 351: 42–44

    Article  Google Scholar 

  • Wuebbles, D. J., Kinnison, D. E., Grant, K. E., and Lean, J. (1991). The effect of solar flux variations and trace gas emissions on recent trends in stratospheric ozone and temperature, J. Geomag. Geoelectr., 43, Suppl: 709–718

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lean, J. (1994). Solar Forcing of Global Change. In: Nesme-Ribes, E. (eds) The Solar Engine and Its Influence on Terrestrial Atmosphere and Climate. NATO ASI Series, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79257-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79257-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79259-5

  • Online ISBN: 978-3-642-79257-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics