Skip to main content

Plant Stress. The Adaptive Potential of Dynamic Systems

  • Chapter
Progress in Botany

Part of the book series: Progress in Botany/Fortschritte der Botanik ((BOTANY,volume 56))

Abstract

Growth and development of plants under natural conditions are the results of the interference of two major regimes of influences: the gene potential of the individual and the external environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anfinsen CB (1973) Angew Chem 24: 1065–1073.

    Article  Google Scholar 

  • Aktinson DE (1986) In: Damjanovich S, Keleti T, Tron L (eds) Dynamics of biochemical systems. Elsevier, Amsterdam, pp 129–143.

    Google Scholar 

  • Blackwood GC, Miflin BJ (1976) Plant Sci Lett 7: 435–446.

    Article  CAS  Google Scholar 

  • Blumenthal R, Changeux J-P, Lefever R (1970) J Membr Biol 2: 351–357.

    Article  Google Scholar 

  • Boiteux A, Hess B, Sel’kov EE (1980) Curr Top Cell Regul 17: 171–201.

    PubMed  CAS  Google Scholar 

  • Boyer JS (1982) Science 218: 443–448.

    Article  PubMed  CAS  Google Scholar 

  • Braam J, Davis R (1990) Cell 12: 357–364.

    Article  Google Scholar 

  • Bradshaw AD (1965) Adv Genet 13: 115–155.

    Article  Google Scholar 

  • Bucher T, Riissmann W (1963) Angew Chem 19: 881–893.

    Article  Google Scholar 

  • Burn P (1988) TIBS 13: 79–83.

    PubMed  CAS  Google Scholar 

  • Burns JA, Cornish-Bowden A, Groen AK, Heinrich R, Kacser H, Porteous JW, Rapoport SM, Rapoport TA, Stucki JW, Tager JM, Wanders RJA, Westerhoff HV (1985) TIBS 97: 639–666.

    Google Scholar 

  • Clausen J, Keck DD, Hieseg WM (1945) Carnegie Inst Wash Publ 564.

    Google Scholar 

  • Corcuera LJ, Hintz M, Pahlich E (1989) Phytochemistry 6: 1569–1571.

    Article  Google Scholar 

  • Clegg JS (1981) Collect Phenom 3: 289–312.

    Google Scholar 

  • Close TJ, Bray EA (eds) (1993) Responses to cellular dehydration during environmental stress. Curr Top Plant Physiol 10.

    Google Scholar 

  • Crowe JH, Hoekstra FA, Crowe LM (1989) Proc Natl Acad Sci USA 86: 520–523.

    Article  PubMed  CAS  Google Scholar 

  • de Mendoza D, Cronan JE Jr (1983) TIBS 8: 49–52.

    Google Scholar 

  • Degn H, Olsen LF, Perram JW (1979) In: Gurel O, Rössler OE (eds) Bifurcation theory and applications in scientific disciplines. Ann NY Acad Sci 316:623–638.

    Google Scholar 

  • Eigen M (1976) Ber Bunsen-Ges 80: 1059–1081.

    CAS  Google Scholar 

  • Eigen M (1988a) Prespektiven der Wissenschaft. Deutsche Verlagsanstalt, Stuttgart.

    Google Scholar 

  • Eigen M (1988b) In: Hierholzer K, Wittmann H-G (eds) Phasensprünge und Stetigkeit in der natürlichen und kulturellen Welt. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 113–149.

    Google Scholar 

  • Ellis JJ, van der Vlies SM (1991) Annu Rev Biochem 60: 321–347.

    Article  PubMed  CAS  Google Scholar 

  • Fischer EH (1993) Angew Chem 105: 1181–1188.

    Article  CAS  Google Scholar 

  • Franks F (1972) Water. A comprehensive treatise. Vol 1. Plenum Press, New York.

    Google Scholar 

  • Glass I, Mackey MC (1988) From clocks to chaos. Princeton University Press. Goldberg ME (1985) TIBS 10: 388–391.

    Google Scholar 

  • Grime JP (1979) Plant strategies and vegetation processes. John Wiley, Chichester.

    Google Scholar 

  • Heinrich R, Rapoport TA (1974) Eur J Biochem 42: 89–95.

    Article  PubMed  CAS  Google Scholar 

  • Henrich S (1993) Diplomarbeit, JLU Gießen

    Google Scholar 

  • Hess B, Markus M (1987) In: Küppers B-O (ed) Ordnung aus dem Chaos. Piper, München, pp 157–174.

    Google Scholar 

  • Higgins CF, Cairney J, Stirling DA, Sutherland L, Booth IR (1987) TIBS 12: 339–344.

    CAS  Google Scholar 

  • Higgins J (1963) Ann NY Acad Sci 108: 339–344.

    Google Scholar 

  • Ho T-H D, Sachs MM (1989) In: Jones HG, Jones MB, Flowers TL (eds) Plants under stress. Cambridge University Press, Cambridge, pp 157–180.

    Chapter  Google Scholar 

  • Jennings DH, Trewavas AJ (eds) (1986) Plasticity in Plants. Symp Soc Exp Biol Nr XXXX Cambridge.

    Google Scholar 

  • Jones HG, Flowers TJ, Jones MB (eds) (1989) Plants under stress. Cambridge University Press, Cambridge. Jones RL, Armstrong JE (1971) Plant Physiol 48: 137–141.

    Google Scholar 

  • Kacser H (1960) Kinetic models of development and heredity. Symp Soc Exp Biol Vol XIV p 13.

    Google Scholar 

  • Kacser H (1983) Biochem Soc Trans 11: 35–40.

    PubMed  CAS  Google Scholar 

  • Kacser H, Burns JA (1973) Symp Soc Exp Bot Vol XXVII, pp 65–104.

    Google Scholar 

  • Kacser H, Burns JA (1979) Biochem Soc Trans 7: 1149–1160.

    PubMed  CAS  Google Scholar 

  • Kacser H, Burns JA (1980) Genetics 97: 639–666.

    Google Scholar 

  • Kacser H, Porteous JW (1987) TIBS 12: 5–12.

    CAS  Google Scholar 

  • Katterman F (ed) (1990) Environmental injury to plants. Academic Press, San Diego. Klotz IM (1966) Arch Biochem Biophys 116: 92–96.

    Google Scholar 

  • Krebs EG (1993) Angew Chem 105: 1173–1183.

    Article  CAS  Google Scholar 

  • Körner EH (1993) In: Schulze ED, Mooney HA (eds) Biodiversity and Ecosystem Function. Springer, Berlin Heidelberg New York, pp 117–140.

    Google Scholar 

  • Kubota K, Ashihara H (1990) Biochem Biophys Acta 1036: 138–142.

    Article  PubMed  CAS  Google Scholar 

  • Laidler KJ (1958) The chemical kinetics of enzyme action. Oxford University Press, London. Larcher W (1987) Naturwissenschaften 74: 158–167.

    Google Scholar 

  • Levitzki A (1978) Quantitative aspects of allosteric mechanisms. Springer, Berlin Heidelberg New York. Lewin S (ed) ( 1974 ) Displacement of water and its control of biochemical reactions. Academic Press, London.

    Google Scholar 

  • Lüttge U, Beck F (1992) Planta 188: 28–38.

    Article  Google Scholar 

  • Masters CJ, Reid S, Don M (1987) Mol Cell Biochem 76: 3–14.

    Article  PubMed  CAS  Google Scholar 

  • Michaelis L, Menten ML (1913) Biochem Z 49: 333–369.

    CAS  Google Scholar 

  • Moore WJ, Hummel DO (1976) Physikalische Chemie. Walter de Gruyter, Berlin, 2.

    Google Scholar 

  • Neumann E (1973) Angew Chem 10: 430–444.

    Article  Google Scholar 

  • Nicoles G, Prigogine I (1989) Exploring complexity. WH Freeman, New York.

    Google Scholar 

  • Nobel PS (1991) Physicochemical and environmental plant physiology. Academic Press, San Diego.

    Google Scholar 

  • Orsi BA, Clealand WW (1972) Biochemistry. 11: 102–109.

    Article  PubMed  CAS  Google Scholar 

  • Pahlich E, Jäger H-J, Kaschel E (1981) Z Pflanzenphysiol 107: 137–144.

    Google Scholar 

  • Pahlich E, Jäger H-J, Horz M (1982) Z Pflanzenphysiol 105: 475–478.

    CAS  Google Scholar 

  • Pahlich E, Stadermann T (1984) J Plant Physiol 115: 91–96.

    CAS  Google Scholar 

  • Pahlich E (1990) Bull Soc Bot Fr 137: 3–11.

    Google Scholar 

  • Pahlich E (1992) In: Mengel K, Pilbeam DI (eds) Nitrogen metabolism of plants. Clarendon Press, Oxford, pp 187–200.

    Google Scholar 

  • Pahlich E (1993) Rev Bras Fisiol Veg 5: 209–216.

    Google Scholar 

  • Paleg LG, Stewart GR, Bradbee JW (1984) Plant Physiol 75: 974–978.

    Article  PubMed  CAS  Google Scholar 

  • Paleg LG, Aspinall D (eds) (1981) The physiology and biochemistry of drought resistence in plants. Academic Press, Sydney.

    Google Scholar 

  • Pettersson G, Ryde-Pettersson U (1987) Eur J Biochem 169: 423–429.

    Article  PubMed  CAS  Google Scholar 

  • Porteous JW (1983) TIBS 8: 5–12.

    Google Scholar 

  • Purich DL, Fromm HJ (1972) Curr Top Cell Reg 6: 131–167.

    CAS  Google Scholar 

  • Reich JG, Sel’kov EE (1981) Energy Metabolism of the cell. A theoretical treatise. Academic Press, London. Richards RA (1993) In: Close TJ, Bray EA (eds) Plant responses to cellular dehydration during environmental stress. Curr Top Plant Physiol 10:211–223.

    Google Scholar 

  • Rosen R (1970) Dynamical system theory in biology. John Wiley, New York.

    Google Scholar 

  • Schrier EE, Robinson RA (1971) J Biol Chem 246: 2870–2874.

    PubMed  CAS  Google Scholar 

  • Schrier EE, Robinson RA (1974) J Solution Chem 3: 493–501.

    Article  CAS  Google Scholar 

  • Segel IH (1975) Enzyme Kinetics. John Wiley, New York. Shinde U, Inouye M (1993) TIBS 18: 442–446.

    Google Scholar 

  • Slatyer RO (1967) Plantwater relationships. Academic Press, London. Somero GN (1978) Annu Rev Ecol Syst 9: 1–29.

    Google Scholar 

  • Somero GN, Osmond CB, Bolis CL (eds) (1992) Water and life. Springer Berlin Heidelberg, New York.

    Google Scholar 

  • Tanford C (1978) Science 200: 1012–1018.

    Article  PubMed  CAS  Google Scholar 

  • Thye E, Pahlich E (1994) Eur J Agron (in press).

    Google Scholar 

  • Timasheff SN (1993) Annu Rev Biophys Biomol Struct 22: 67–97.

    Article  PubMed  CAS  Google Scholar 

  • Timasheff SN, Fasman GD (eds) (1969) Structure and stability of biological macromoleeules, vol 2. Marcel Dekker, New York.

    Google Scholar 

  • Von Hippel PH, Schleich T (eds) (1969) In: Timasheff SN, Fasman GD (eds) (1969) Structure and stability of biological macromolecules. Marcel Dekker, New York, pp 417– 469.

    Google Scholar 

  • Veit B, Greene B, Lowe B, Mathern J, Sinha N, Vollbert E, Walko R, Hake S (1991) Dev Suppl 1: 105–111.

    Google Scholar 

  • Weatherley PE (1965) The state and movement of water in the leaf. Symp Soc Exp Biol XIX: 157–185.

    Google Scholar 

  • Webb JL (1963) Enzyme and metabolic inhibitors vol 1. Academic Press, New York. Wiggins PM (1973) Biophys J 13: 385–398.

    Google Scholar 

  • Wolfenden RV, Cullis PM, Southgate CCF (1979) Science 206: 575–577.

    Article  PubMed  CAS  Google Scholar 

  • Wong JT-F (1975) Kinetics of enzyme mechanisms. Academic Press, London.

    Google Scholar 

  • Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Science 217: 1214–1222.

    Article  PubMed  CAS  Google Scholar 

  • Zaccai G, Eisenberg H (1990) TIBS 15: 333–337

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pahlich, E. (1995). Plant Stress. The Adaptive Potential of Dynamic Systems. In: Behnke, HD., Lüttge, U., Esser, K., Kadereit, J.W., Runge, M. (eds) Progress in Botany. Progress in Botany/Fortschritte der Botanik, vol 56. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79249-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79249-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79251-9

  • Online ISBN: 978-3-642-79249-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics