Skip to main content

Selectable Marker and Reporter Genes

  • Chapter

Part of the book series: Springer Lab Manual ((SLM))

Abstract

In plant transformation systems, the efficiency of stable gene transfer is low. Only a fraction of the cells exposed to the foreign DNA integrate the DNA into the genome, thus providing the basis for regeneration of transgenic plants. Therefore, systems are required which allow selection of such transformed clones. A selective system consists of a selective agent, i.e., a phytotoxic compound interfering with the plant cellular metabolism, and a selectable marker gene, i.e., a DNA sequence coding for a product which allows detoxification or evasion of the selective agent through enzymatic modification of the selective agent or expression of an altered target, respectively. Clones with integrated selectable marker genes can be detected through negative selection of untransformed cells or tissue in vitro or whole plants in vivo. Co-transformation of nonselectable sequences linked or nonlinked with selectable marker genes allows recovery of tissue or plants which contain the nonselectable sequence. A selection system for transformed plant cells must meet several requirements: the selectable marker gene should allow expression in a variety of plant tissues, the background metabolic activity or resistance should be minimal, and a clear change of phenotype should be visible. Over the past decade, a number of such systems have been developed (cf. Table 1). They include the use of antibiotics, herbicides, substrate analogues, or high concentrations of other compounds. Several of them are widely used in plant transformation work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alton N, Vapnek D (1979) Nucleotide sequence analysis of the chloramphenicol resistance transposon Tn9. Nature 282: 864–869

    Article  PubMed  CAS  Google Scholar 

  • Balazs E, Bonneville JM (1987) Chloramphenicol acetyl transferase activity inBrassica spp. Plant Sci 50: 65–68

    Article  CAS  Google Scholar 

  • Battraw M, Hall TC (1992) Expression of a chimeric neomycin phosphotransferase II gene in first and second generation transgenic rice plants. Plant Sci 86: 191–202

    Article  CAS  Google Scholar 

  • Becker D, Brettschneider R, Lörz H (1994) Fertile transgenic wheat from microprojectile bombardment of scutellar tissue. Plant J 5: 299–307

    Article  PubMed  CAS  Google Scholar 

  • Bevan MW, Flavell RB, Chilton MD (1983) A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 394: 184–187

    Article  Google Scholar 

  • Bilang R, Iida S, Peterhans A, Potrykus I, Paszkowski J (1991) The 3’-terminal region of the hygromycin-B-resistance gene is important for its activity inEscherichia coli andNicotiana tabacum. Gene 100: 247–250

    Article  PubMed  CAS  Google Scholar 

  • Bilang R, Zhang S, Leduc N, Iglesias VA, Gisel A, Simmonds J, Potrykus I, Sautter C (1993) Transient gene expression in vegetative shoot apical meristems of wheat after ballistic microtargeting. Plant J 4: 735–744

    Article  CAS  Google Scholar 

  • Blakely RL (1969) The biochemistry of folic acid and related pteridines. North Holland, Amsterdam

    Google Scholar 

  • Bowen B (1992) Anthocyanin genes as visual markers in transformed maize tissues. In: Gallagher S (ed) GUS protocols: Using the GUS gene as a reporter of gene expression. Academic Press, San Diego pp. 163–177

    Google Scholar 

  • Brouillard R (1988) Flavonoids and flower colour. In: Harborne JB (ed) The flavonoids, advances in research since 1980. Chapman and Hall, London, pp 593 –660

    Google Scholar 

  • Buchanan-Wollaston V, Snape A, Cannon F (1992) A plant selectable marker based on the detoxification of the herbicide dalapon. Plant Cell Rep 11: 627–631

    Article  CAS  Google Scholar 

  • Cabanes-Bastos E, Day AG, Lichtenstein CP (1989) A sensitive and simple assay for neomycin phosphotransferase II activity in transgenic tissue. Gene 77: 169–176

    Article  PubMed  CAS  Google Scholar 

  • Carrer H, Hockenberry TN, Svab Z, Maliga P (1993) Kanamycin resistance as a selectable marker for plastid transformation in tobacco. Mol Gen Genet 241: 49–56

    Article  PubMed  CAS  Google Scholar 

  • Cheung AL, Bogorad L, Van Montagu M, Schell J (1988) Relocating a gene for herbicide tolerance: a chloroplast gene is converted into a nuclear gene. Proc Natl Acad Sci USA 85:391 –395

    Google Scholar 

  • Christou P, McCabe DE, Swain WF (1988) Stable transformation of soybean callus by DNA coated gold particles. Plant Physiol 87:671 –674

    CAS  Google Scholar 

  • Christou P, Ford TL, Kofron M (1992) Production of transgenic rice(Oryza sativa L.) plants from agronomically important Indica and Japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Bio/Technology 9: 957–962

    Article  Google Scholar 

  • Crossland L, Jayne S, Cang YF, Reed J, Nahory J, Armour S, Stein J, Grater T, Miner D, Walker L, Wong J (1994) Production of transgenic wheat by particle bombardment using methotrexate as a selection agent. J Cell Biochem 18A: 100 (Abstract Suppl)

    Google Scholar 

  • Datta SK, Peterhans A, Datta K, Potrykus I (1990) Genetically engineered fertile Indica rice recovered from protoplasts. Bio/Technology 8: 736– 740

    Article  CAS  Google Scholar 

  • Datta SK, Datta K, Soltanifar N, Donn G, Potrykus I (1992) Herbicide-resistant Indica rice plants from IRRI breeding line IR72 after PEG-mediated transformation of protoplasts. Plant Mol Biol 20: 619–629

    Article  PubMed  CAS  Google Scholar 

  • De Block M, Herrera-Estrella L, Van Montagu M, Schell J, Zambryski P (1984) Expression of foreign genes in regenerated plants and in their progeny. EMBO J 3: 1681–1689

    PubMed  Google Scholar 

  • De Block M, Botterman J, Vandewiele M, Dockx J, Thoen C, Gosselé V, Movva NR, Thompson C, Van Montagu M, Leemans J (1987) Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J 6: 2513–2518

    PubMed  CAS  Google Scholar 

  • Della-Cioppa G, Bauer SC, Taylor ML, Rochester DE, Klein BK, Shah DM, Fraley RT, Kishore GM (1987) Targeting a herbicide-resistant enzyme fromEscherichia coli to chloroplasts of higher plants. Bio/Technology 5: 579–584

    Article  CAS  Google Scholar 

  • De Wet JR, Wood LV, Helinski DR, DeLuca M (1985) Cloning of firefly luciferase cDNA and the expression of active luciferase inEscherichia coli. Proc Natl Acad Sci USA 82:7870–7873

    Google Scholar 

  • D’Halluin K, Bonne E, Bossut M, De Beuckeleer M, Leemans J (1992a) Transgenic maize plants by tissue electroporation. Plant Cell 4:1495–1505

    Google Scholar 

  • D’Halluin K, De Block M, Denecke J, Janssen J, Leemans J, Reynaerts A, Botterman J (1992b) Thebar gene as selectable and screenable marker in plant engineering. In: Wu R (ed) Recombinant DNA. Methods Enzymol 216: 415 –426, Academic Press, San Diego

    Google Scholar 

  • Dong JZ, McHughen A (1993) An improved procedure for production of transgenic flax plants usingAgrobacterium tumefaciens. Plant Sci 88: 61–71

    Article  CAS  Google Scholar 

  • Eichholtz DA, Rogers SG, Horsch RB, Klee HJ, Hayford M, Hoffmann NL, Bradford SB, Fink C, Flick J, O’Connell KM, Fraley RT (1987) Expression of mouse dihydrofolate reductase gene confers methotrexate resistance in transgenic petunia plants. Som Cell Mol Genet 13: 67–76

    Article  CAS  Google Scholar 

  • Firoozabady E, Deboer DL, Merlo DJ, Halk EL, Amerson LN, Rashka KE, Murray EE (1987) Transformation of cotton (Gossypium hirsutum L.) byAgrobacterium tumefaciens and regeneration of transgenic plants. Plant Mol Biol 10: 105–116

    Article  CAS  Google Scholar 

  • Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS, Adams SP, Bittner ML, Brand LA, Fink CL, Fry JS, Gallupi GR, Goldberg SB (1983) Expression of bacterial genes im plant cells. Proc Natl Acad Sci USA 80: 4803 – 4806

    Article  PubMed  CAS  Google Scholar 

  • Goddijn OJM, van der Duyn Schouten PM, Schilperoort RA, Hoge JHC (1993) A chimaeric tryptophan decarboxylase gene as a novel selectable marker in plant cells. Plant Mol Biol 22: 907–912

    CAS  Google Scholar 

  • Gordon-Kamm WJ, Spencer TM, Mangano ML et al. (1990) Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2: 603– 618

    PubMed  CAS  Google Scholar 

  • Gorman CM, Moffat LF, Howard BH (1982) Recombinant genomes which express

    Google Scholar 

  • chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol 2:1044–1051

    Google Scholar 

  • Gould JH, Smith RH (1989) A non-destructive assay for GUS in the media of plant tissue culture. Plant Mol Biol Rep 7:209–216

    Article  CAS  Google Scholar 

  • Gritz L, Davies J (1983) Plasmid-encoded hygromycin B resistance: the sequence of hygromycin B phosphotransferase gene and its expression inEscherichia coli andSaccharomyces cerevisiae. Gene 25: 179–188

    Article  PubMed  CAS  Google Scholar 

  • Guerineau F, Brooks L, Meadows J, Lucy A, Robinson C, Mullineaux P (1990) Sulfonamide resistance gene for plant transformation. Plant Mol Biol 15: 127–136

    Article  PubMed  CAS  Google Scholar 

  • Haber DA, Beverley SM, Kiely ML, Schimke RT (1981) Properties of an altered dihydrofolate reductase encoded by amplified genes in cultured mouse fibroblasts. J Biol Chem 256: 9501–9510

    PubMed  CAS  Google Scholar 

  • Haughn GW, Smith J, Mazur B, Somerville C (1988) Transformation with a mutantArabidopsis acetolactate synthase gene renders tobacco resistant to sulfonylurea herbicides. Mol Gen Genet 211: 266–271

    Article  CAS  Google Scholar 

  • Hauptmann RM, Vasil V, Ozias-Akins P, Tabaeizadeh Z, Rogers SG, Fraley RT, Horsch RB, Vasil IK (1988) Evaluation of selectable markers for obtaining stable transformants in the gramineae. Plant Physiol 86: 602–606

    Article  PubMed  CAS  Google Scholar 

  • Hayford MB, Medford JI, Hoffman NL, Rogers SG, Klee HJ (1988) Development of a plant transformation selection system based on expression of genes encoding gentamycin acetyltransferases. Plant Physiol 86: 1216 –1222

    Article  PubMed  CAS  Google Scholar 

  • Herrera-Estrella L, De Block M, Messens E, Hernalsteens JP, Van Montagu M, Schell J (1983) Chimeric genes as dominant selectable markers in plant cells. EMBO J 2: 987–995

    PubMed  CAS  Google Scholar 

  • Hille J, Verheggen F, Roelvink P, Franssen H, van Kammen A, Zabel P (1986) Bleomycin resistance: a new dominant selectable marker for plant cell transformation. Plant Mol Biol 7: 171–176

    Article  CAS  Google Scholar 

  • Horsch RB, Fraley RT, Rogers SG, Sanders PR, Lloyd A, Hoffman N (1984) Inheritance of functional foreign genes in plants. Science 223: 496–498

    Article  PubMed  CAS  Google Scholar 

  • Hruby DE, Wilson EM (1992) Use of fluorescent chloramphenicol derivative as a substrate for chloramphenicol acetyltransferase assays. In: Wu R (ed) Recombinant DNA. Methods Enzymol 216: 369–376

    Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5: 387–405

    Article  CAS  Google Scholar 

  • Jefferson RA, Burgess SM, Hirsh D (1986) (3-glucuronidase fromEscherichia coli as a gene-fusion marker. Proc Natl Acad Sci USA 83: 8447–8451

    Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: 13-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6: 3901–3908

    PubMed  CAS  Google Scholar 

  • Jones JDG, Svab Z, Harper EC, Hurwitz CD, Maliga P (1987) A dominant nuclear streptomycin resistance marker for plant cell transformation. Mol Gen Genet 210: 86–91

    Article  CAS  Google Scholar 

  • Kamakura T, Yoneyama K, Yamaguchi I (1990) Expression of the blasticidin S deaminase gene(bsr) in tobacco: Fungicide tolerance and a new selective marker for transgenic plants. Mol Gen Genet 223: 332–334

    Google Scholar 

  • Koncz C, Olsson O, Langridge WHR, Schell J, Szalay AA (1987) Expression and assembly of functional bacterial luciferase in plants. Proc Natl Acad Sci USA 84: 131–135

    Article  PubMed  CAS  Google Scholar 

  • Koziel MG, Adams TL, Hazlet MA, Damm D, Miller J, Dahlbeck D, Jayne S, Staskawicz BJ (1984) A Cauliflower Mosaic Virus promoter directs expression of kanamycin resistance in morpho-genic transformed plant cells. J Mol Appl Gen 2: 549–562

    CAS  Google Scholar 

  • Lloyd AM, Barnason AR, Rogers SG, Byrne MC, Fraley RT, Horsch RB (1986) Transformation ofArabidopsis thaliana withAgrobacterium tumefaciens. Science 234: 464–466

    Article  PubMed  CAS  Google Scholar 

  • Lloyd AM, Walbot V, Davis RW (1992)Arabidopsis andNicotiana anthocyanin production activated by maize regulators R and Cl. Science 258: 1773–1775

    Google Scholar 

  • Ludwig SE, Wessler SR (1990) MaizeR gene family tissue-specific helix-loop-helix proteins. Cell 62: 849–851

    Article  PubMed  CAS  Google Scholar 

  • Ludwig SE, Bowen B, Beach L, Wessler SR (1990) A regulatory gene as a novel visible marker for maize transformation. Science 247: 449–450

    Article  PubMed  CAS  Google Scholar 

  • Lyon BR, Llewellyn DJ, Huppatz JL, Dennis ES, Peacock WJ (1989) Expression of a bacterial gene in transgenic tobacco plants confers resistance to the herbicide 2,4-dichlorophenoxyacetic acid. Plant Mol Biol 13: 533–540

    Article  PubMed  CAS  Google Scholar 

  • Maliga P, Svab Z, Harper EC, Jones JDG (1988) Improved expression of streptomycin resistance in plants due to a deletion in the streptomycin phosphotransferase coding sequence. Mol Gen Genet 214: 456–459

    Article  PubMed  CAS  Google Scholar 

  • Mazodier P, Giraud E, Gasser F (1983) Genetic analysis of the streptomycin resistance encoded by Tn5. Mol Gen Genet 192: 155–162

    Article  CAS  Google Scholar 

  • McDonnell RE, Clark RD, Smith WA, Hinchee MA (1987) A simplified method for the detection of neomycin phosphotransferase II activity in transformed plant tissues. Plant Mol Biol Rep 5: 380–386

    Article  CAS  Google Scholar 

  • Meijer EGM, Schilperoort RA, Rueb S, van Os-Ruygrok PE, Hensgens LAM (1991) Transgenic rice cell lines and plants: expression of transferred chimeric genes. Plant Mol Biol 16: 807–820

    Article  PubMed  CAS  Google Scholar 

  • Millar AJ, Short SR, Hiratsuka K, Chua NH, Kay SA (1992) Firefly luciferase as a reporter of regulated gene expression in higher plants. Plant Mol Biol Rep 10: 324–337

    Article  CAS  Google Scholar 

  • Miner JN, Weinrich SL, Hruby DE (1988) Molecular dissection of cis-acting elements from 5’-proximal regions of a vaccinia virus late gene cluster. J Virol 62: 297

    PubMed  CAS  Google Scholar 

  • Mol JNM, Stuitje AR, Gerats AGM, Koes RE (1988) Cloned genes of phenylpropanoid metabolism. Plant Mol Biol Rep 6: 274–279

    Article  CAS  Google Scholar 

  • Moll B, Polsby L, Maliga P (1990) Streptomycin and lincomycin resistances are selective plastid markers in culturedNicotiana cells. Mol Gen Genet 221: 245–250

    Article  CAS  Google Scholar 

  • Murakami T, Anzai H, Imai S, Satoh A, Nagaoka D, Thompson CJ (1986) The bialaphos biosynthetic genes ofStreptomyces hygroscopicus: molecular cloning and characterization of the gene cluster. Mol Gen Genet 205: 42–50

    Article  CAS  Google Scholar 

  • Ow DW, Wood KV, DeLuca M, De Wet JR, Helinski DR, Howell SH (1986) Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science 234: 856–859

    Article  PubMed  CAS  Google Scholar 

  • Pattishall KH, Acar J, Burchall JJ, Goldstein FW, Harvey RJ (1977) Two distinct types of trimethoprim-resistant dihydrofolate reductase specified by R-plasmids of different compatibility groups. J Biol Chem 252: 2319–2323

    PubMed  CAS  Google Scholar 

  • Peng J, Kononowicz H, Hodges TK (1992) Transgenic Indica rice plants. Theor Appl Genet 83: 855–863

    Article  CAS  Google Scholar 

  • Peng J, Wen F, Hodges TK (1993) A rapid method for qualitative assay of both neomycin phosphostransferase II and (3-glucuronidase activities in transgenic plants. Plant Mol Biol Rep 11: 38–47

    Article  CAS  Google Scholar 

  • Perez P, Tiraby G, Kallerhoff J, Peret J (1989) Phleomycin resistance as a dominant selectable marker for plant cell transformation. Plant Mol Biol 13: 365–373

    Article  PubMed  CAS  Google Scholar 

  • Perl A, Galili S, Orit S, Ben-Tzvi I, Galili G (1993) Bacterial dihydropicolinate synthase and desensitized aspartate kinase: two novel selectable markers for plant transformation. Bio/ Technology 11: 715–718

    Article  CAS  Google Scholar 

  • Potrykus I, Saul MW, Petruska J, Paszkowski J, Shillito RD (1985) Direct gene transfer to cells of a graminaceous monocot. Mol Gen Genet 199: 183–188

    Article  CAS  Google Scholar 

  • Shimamoto K, Terada R, Izawa T, Fujimoto H (1989) Fertile transgenic rice plants regenerated from transformed protoplasts. Nature 338: 274–276

    Article  CAS  Google Scholar 

  • Simonsen CC, Levinson AD (1983) Isolation and expression of an altered mouse dihydrofolate reductase cDNA. Proc Natl Acad Sci USA 80: 2495–2499

    Article  PubMed  CAS  Google Scholar 

  • Sleigh MJ (1986) A nonchromatographic assay for expression of the chloramphenicol acetyltransferase gene in eucaryotic cells. Anal Biochem 156: 251

    Article  PubMed  CAS  Google Scholar 

  • Somers DA, Narayanan KR, Kleinhofs A, Cooper-Bland S, Cocking EC (1986) Immunological evidence for transfer of the barley nitrate reductase structural gene toNicotiana tabacum by protoplast fusion. Mol Gen Genet 204: 296–301

    Article  CAS  Google Scholar 

  • Stalker DM, McBride KE, Malyj LD (1988) Herbicide resistance in transgenic plants expressing a bacterial detoxification gene. Science 242: 419–423

    Article  PubMed  CAS  Google Scholar 

  • Svab Z, Hajdukiewicz P, Maliga P (1990a) Stable transformation of plastids in higher plants. Proc Natl Acad Sci USA 87: 8526–8530

    Article  PubMed  CAS  Google Scholar 

  • Svab Z, Harper EC, Jones JDG, Maliga P (1990b) Aminoglycoside-3’-adenyltransferase confers resistance to spectinomycin and streptomycin inNicotiana tabacum. Plant Mol Biol 14: 197–206

    Article  PubMed  CAS  Google Scholar 

  • Thompson CJ, Movva NR, Tizard R, Crameri R, Davies JE, Lauwereys M, Botterman J (1987) Characterization of the herbicide-resistance genebar fromStreptomyces hygroscopicus. EMBO J 6: 2519–2523

    PubMed  CAS  Google Scholar 

  • Thompson GA, Hiatt WR, Facciotti D, Stalker DM, Cornai L (1987) Expression in plants of a bacterial gene coding for glyphosate resistance. Weed Sci 35: 19-23 (suppl)

    Google Scholar 

  • Valvekens D, Van Montagu M, Van Lijsebettens M (1988)Agrobacterium tumefaciens-mediated transformation ofArabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci USA 85: 5536–5540

    Google Scholar 

  • Vasil V, Brown SE, Re D, Fromm ME, Vasil IK (1991) Stably transformed callus lines from microprojectile bombardment of cell suspension cultures of wheat. Bio/Technology 9: 743–747

    Article  CAS  Google Scholar 

  • Vasil V, Castillo AM, Fromm ME, Vasil IK (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Bio/ Technology 10: 667–674

    Article  CAS  Google Scholar 

  • Waldron C, Murphy EB, Roberts JL, Gustafson GD, Armour SL, Malcolm SK (1985) Resistance to hygromycin B: a new marker for plant transformation studies. Plant Mol Biol 5: 103–108

    Article  CAS  Google Scholar 

  • Walters DA, Vetsch CS, Potts DE, Lundquist RC (1992) Transformation and inheritance of a hygromycin phosphotransferase gene in maize plants. Plant Mol Biol 18: 189–200

    Article  PubMed  CAS  Google Scholar 

  • Wang ZY, Takamizo T, Iglesias VA, Osusky M, Nagel J, Potrykus I, Spangenberg G (1992) Transgenic plants of tall fescue(Festuca arundinacea Schreb.) obtained by direct gene transfer to protoplasts. Bio/Technology 10: 691–696

    Article  PubMed  CAS  Google Scholar 

  • Wilmink A, Dons JIM (1993) Selective agents and marker genes for use in transformation of monocotyledonous plants. Plant Mol Biol Rep 11: 165–185

    Article  CAS  Google Scholar 

  • Wohlleben W, Arnold W, Broer I, Hillemann D, Strauch E, Pithier A (1988) Nucleotide sequence of the phosphinothricin N-acetyltransferase gene fromStreptomyces viridochromogenes Tü494 and its expression inNicotiana tabacum. Gene 70: 25–37

    Article  PubMed  CAS  Google Scholar 

  • Wood KV (1991) Recent advances and prospects for use of beetle luciferases as genetic reporters. In: Stanley PE, Kricka J (eds) Bioluminescence and chemiluminescence: current status. Wiley, Chichester, pp 543–546

    Google Scholar 

  • Allen GC, Hall GE, Childs LC, Weissinger AK, Spiker S, Thompson WF (1993) Scaffold attachment regions increase reporter gene expression in stably transformed plant cells. Plant Cell 5: 603–613

    PubMed  CAS  Google Scholar 

  • Breyne P, van Montagu M, Gheysen G (1993) Higher order organization of plant chromatin and the regulation of gene expression. Ag Biotech News Inform 5: 183–188

    Google Scholar 

  • Christou P, Swain WF (1992) Cotransformation frequencies of foreign genes in soybean cell cultures. Theor Appl Genet 79: 337–341

    Article  Google Scholar 

  • Ingelbrecht ILW, Breyne P, Vancompernolle K, Jacobs A, van Montague MC, Depicker AG (1991) Transcriptional interference in transgenic plants. Gene 109: 239–242

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen R (1990) Altered gene expression in plants due to trans interactions between homologous genes. Tibtech 8: 340–344

    Article  CAS  Google Scholar 

  • Matzke M, Matzke AJM (1993) Genomic imprinting in plants: parental effects and trans-inactivation phenomena. Annu Rev Plant Physiol Plant Mol Biol 44: 53–76

    Article  CAS  Google Scholar 

  • Mlynarova L, Loonen A, Heldens J, Jansen RC, Keizer P, Stiekema WJ, Nap J-P (1994) Reduced position effect in mature transgenic plants conferred by the chicken lysozyme matrix-associated region. Plant Cell 6: 417–426

    PubMed  CAS  Google Scholar 

  • Paszty CJR, Lurquin PF (1990) Inhibition of transgene expression in plant protoplasts by the presence incis of an opposing 3’ promoter. Plant Sci 72: 69–79

    Article  CAS  Google Scholar 

  • Peterson DO, Beifuss KK, Morley KL (1987) Context-dependent gene expression: cis-acting negative effects of specific procaryotic plasmid sequences on eucaryotic genes. Mol Cell Biol 7: 1563–1567

    PubMed  CAS  Google Scholar 

  • Rogers SW, Rogers JC (1992) The importance of DNA methylation for stability of foreign DNA in barley. Plant Mol Biol 18: 945–961

    Article  PubMed  CAS  Google Scholar 

  • Swoboda P, Gal S, Hohn B, Puchta H (1994) Intrachromosomal homologous recombination in whole plants. EMBO J 13: 484–489

    PubMed  CAS  Google Scholar 

  • Tovar Torres J, Block A, Hahlbrock K, Somssich IE (1993) Influence of bacterial strain genotype on transient expression of plasmid DNA in plant protoplasts. Plant J 4: 587–592

    Article  CAS  Google Scholar 

  • Weising K, Schell J, Kahl G (1988) Foreign genes in plants: Structure, expression, and applications. Annu Rev Genet 22: 421-477

    Google Scholar 

  • Yoder JI, Goldsbrough AP (1994) Transformation systems for generating marker-free transgenic plants. Biotechnology 12: 263–268

    Article  CAS  Google Scholar 

  • Alton N, Vapnek D (1979) Nucleotide sequence analysis of the chloramphenicol resistance transposon Tn9. Nature 282: 864–869

    Article  PubMed  CAS  Google Scholar 

  • Balazs E, Bonneville JM (1987) Chloramphenicol acetyl transferase activity inBrassica spp. Plant Sci 50: 65–68

    Article  CAS  Google Scholar 

  • Battraw M, Hall TC (1992) Expression of a chimeric neomycin phosphotransferase II gene in first and second generation transgenic rice plants. Plant Sci 86: 191–202

    Article  CAS  Google Scholar 

  • Becker D, Brettschneider R, Lörz H (1994) Fertile transgenic wheat from microprojectile bombardment of scutellar tissue. Plant J 5: 299–307

    Article  PubMed  CAS  Google Scholar 

  • Bevan MW, Flavell RB, Chilton MD (1983) A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 394: 184–187

    Article  Google Scholar 

  • Bilang R, Iida S, Peterhans A, Potrykus I, Paszkowski J (1991) The 3’ -terminal region of the hygromycin-B-resistance gene is important for its activity in Escherichia coli andNicotiana tabacum. Gene 100: 247–250

    Article  PubMed  CAS  Google Scholar 

  • Bilang R, Zhang S, Leduc N, Iglesias VA, Gisel A, Simmonds J, Potrykus I, Sautter C (1993) Transient gene expression in vegetative shoot apical meristems of wheat after ballistic microtargeting. Plant J 4: 735–744

    Article  CAS  Google Scholar 

  • Blakely RL (1969) The biochemistry of folic acid and related pteridines. North Holland, Amsterdam

    Google Scholar 

  • Bowen B (1992) Anthocyanin genes as visual markers in transformed maize tissues. In: Gallagher S (ed) GUS protocols: Using the GUS gene as a reporter of gene expression. Academic Press, San Diego pp. 163–177

    Google Scholar 

  • Brouillard R (1988) Flavonoids and flower colour. In: Harborne JB (ed) The flavonoids, advances in research since 1980. Chapman and Hall, London, pp 593–660

    Google Scholar 

  • Buchanan-Wollaston V, Snape A, Cannon F (1992) A plant selectable marker based on the detoxification of the herbicide dalapon. Plant Cell Rep 11: 627–631

    Article  CAS  Google Scholar 

  • Cabanes-Bastos E, Day AG, Lichtenstein CP (1989) A sensitive and simple assay for neomycin phosphotransferase II activity in transgenic tissue. Gene 77: 169–176

    Article  PubMed  CAS  Google Scholar 

  • Carrer H, Hockenberry TN, Svab Z, Maliga P (1993) Kanamycin resistance as a selectable marker for plastid transformation in tobacco. Mol Gen Genet 241: 49–56

    Article  PubMed  CAS  Google Scholar 

  • Cheung AL, Bogorad L, Van Montagu M, Schell J (1988) Relocating a gene for herbicide tolerance:

    Google Scholar 

  • a chloroplast gene is converted into a nuclear gene. Proc Natl Acad Sci USA 85:391-395

    Google Scholar 

  • Christou P, McCabe DE, Swain WF (1988) Stable transformation of soybean callus by DNA coated

    Google Scholar 

  • gold particles. Plant Physiol 87:671-674

    Google Scholar 

  • Christou P, Ford TL, Kofron M (1992) Production of transgenic rice(Oryza sativa L.) plants from agronomically important Indica and Japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Bio/Technology 9: 957–962

    Article  Google Scholar 

  • Crossland L, Jayne S, Cang YF, Reed J, Nahory J, Armour S, Stein J, Grater T, Miner D, Walker L, Wong J (1994) Production of transgenic wheat by particle bombardment using methotrexate as a selection agent. J Cell Biochem 18A: 100 (Abstract Suppl)

    Google Scholar 

  • Datta SK, Peterhans A, Datta K, Potrykus I (1990) Genetically engineered fertile Indica rice recovered from protoplasts. Bio/Technology 8: 736–740

    Article  CAS  Google Scholar 

  • Datta SK, Datta K, Soltanifar N, Donn G, Potrykus I (1992) Herbicide-resistant Indica rice plants from IRRI breeding line IR72 after PEG-mediated transformation of protoplasts. Plant Mol Biol 20: 619–629

    Article  PubMed  CAS  Google Scholar 

  • De Block M, Herrera-Estrella L, Van Montagu M, Schell J, Zambryski P (1984) Expression of foreign genes in regenerated plants and in their progeny. EMBO J 3: 1681–1689

    PubMed  Google Scholar 

  • De Block M, Botterman J, Vandewiele M, Dockx J, Thoen C, Gosselé V, Movva NR, Thompson C, Van Montagu M, Leemans J (1987) Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J 6: 2513–2518

    PubMed  CAS  Google Scholar 

  • Della-Cioppa G, Bauer SC, Taylor ML, Rochester DE, Klein BK, Shah DM, Fraley RT, Kishore GM (1987) Targeting a herbicide-resistant enzyme fromEscherichia coli to chloroplasts of higher plants. Bio/Technology 5: 579–584

    Article  CAS  Google Scholar 

  • De Wet JR, Wood LV, Helinski DR, DeLuca M (1985) Cloning of firefly luciferase cDNA and the

    Google Scholar 

  • expression of active luciferase inEscherichia coli. Proc Natl Acad Sci USA 82:7870-7873

    Google Scholar 

  • D’Halluin K, Bonne E, Bossut M, De Beuckeleer M, Leemans J (1992a) Transgenic maize plants by

    Google Scholar 

  • tissue electroporation. Plant Cell 4:1495-1505

    Google Scholar 

  • D’Halluin K, De Block M, Denecke J, Janssen J, Leemans J, Reynaerts A, Botterman J (1992b) Thebar gene as selectable and screenable marker in plant engineering. In: Wu R (ed) Recombinant DNA. Methods Enzymol 216: 415–426, Academic Press, San Diego

    Google Scholar 

  • Dong JZ, McHughen A (1993) An improved procedure for production of transgenic flax plants usingAgrobacterium tumefaciens. Plant Sci 88: 61–71

    Article  CAS  Google Scholar 

  • Eichholtz DA, Rogers SG, Horsch RB, Klee HJ, Hayford M, Hoffmann NL, Bradford SB, Fink C, Flick J, O’Connell KM, Fraley RT (1987) Expression of mouse dihydrofolate reductase gene confers methotrexate resistance in transgenic petunia plants. Som Cell Mol Genet 13: 67–76

    Article  CAS  Google Scholar 

  • Firoozabady E, Deboer DL, Merlo DJ, Halk EL, Amerson LN, Rashka KE, Murray EE (1987) Transformation of cotton (Gossypium hirsutum L.) byAgrobacterium tumefaciens and regeneration of transgenic plants. Plant Mol Biol 10: 105–116

    Article  CAS  Google Scholar 

  • Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS, Adams SP, Bittner ML, Brand LA, Fink CL, Fry JS, Gallupi GR, Goldberg SB (1983) Expression of bacterial genes im plant cells. Proc Natl Acad Sci USA 80: 4803–4806

    Article  PubMed  CAS  Google Scholar 

  • Goddijn OJM, van der Duyn Schouten PM, Schilperoort RA, Hoge JHC (1993) A chimaeric tryptophan decarboxylase gene as a novel selectable marker in plant cells. Plant Mol Biol 22: 907–912

    CAS  Google Scholar 

  • Gordon-Kamm WJ, Spencer TM, Mangano ML et al. (1990) Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2: 603–618

    PubMed  CAS  Google Scholar 

  • Gorman CM, Moffat LF, Howard BH (1982) Recombinant genomes which express

    Google Scholar 

  • chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol 2:1044-1051

    Google Scholar 

  • Gould JH, Smith RH (1989) A non-destructive assay for GUS in the media of plant tissue culture.

    Google Scholar 

  • Plant Mol Biol Rep 7:209-216

    Google Scholar 

  • Gritz L, Davies J (1983) Plasmid-encoded hygromycin B resistance: the sequence of hygromycin B phosphotransferase gene and its expression inEscherichia coli andSaccharomyces cerevisiae. Gene 25: 179–188

    Article  PubMed  CAS  Google Scholar 

  • Guerineau F, Brooks L, Meadows J, Lucy A, Robinson C, Mullineaux P (1990) Sulfonamide resistance gene for plant transformation. Plant Mol Biol 15: 127–136

    Article  PubMed  CAS  Google Scholar 

  • Haber DA, Beverley SM, Kiely ML, Schimke RT (1981) Properties of an altered dihydrofolate reductase encoded by amplified genes in cultured mouse fibroblasts. J Biol Chem 256: 9501–9510

    PubMed  CAS  Google Scholar 

  • Haughn GW, Smith J, Mazur B, Somerville C (1988) Transformation with a mutantArabidopsis acetolactate synthase gene renders tobacco resistant to sulfonylurea herbicides. Mol Gen Genet 211: 266–271

    Article  CAS  Google Scholar 

  • Hauptmann RM, Vasil V, Ozias-Akins P, Tabaeizadeh Z, Rogers SG, Fraley RT, Horsch RB, Vasil IK (1988) Evaluation of selectable markers for obtaining stable transformants in the gramineae. Plant Physiol 86: 602–606

    Article  PubMed  CAS  Google Scholar 

  • Hayford MB, Medford JI, Hoffman NL, Rogers SG, Klee HJ (1988) Development of a plant transformation selection system based on expression of genes encoding gentamycin acetyltransferases. Plant Physiol 86: 1216–1222

    Article  PubMed  CAS  Google Scholar 

  • Herrera-Estrella L, De Block M, Messens E, Hernalsteens JP, Van Montagu M, Schell J (1983) Chimeric genes as dominant selectable markers in plant cells. EMBO J 2: 987–995

    PubMed  CAS  Google Scholar 

  • Hille J, Verheggen F, Roelvink P, Franssen H, van Kammen A, Zabel P (1986) Bleomycin resistance: a new dominant selectable marker for plant cell transformation. Plant Mol Biol 7: 171–176

    Article  CAS  Google Scholar 

  • Horsch RB, Fraley RT, Rogers SG, Sanders PR, Lloyd A, Hoffman N (1984) Inheritance of functional foreign genes in plants. Science 223: 496–498

    Article  PubMed  CAS  Google Scholar 

  • Hruby DE, Wilson EM (1992) Use of fluorescent chloramphenicol derivative as a substrate for chloramphenicol acetyltransferase assays. In: Wu R (ed) Recombinant DNA. Methods Enzymol 216: 369–376

    Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5: 387–405

    Article  CAS  Google Scholar 

  • Jefferson RA, Burgess SM, Hirsh D (1986) (3-glucuronidase fromEscherichia coli as a gene-fusion marker. Proc Natl Acad Sci USA 83: 8447–8451

    Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: 13-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6: 3901–3908

    PubMed  CAS  Google Scholar 

  • Jones JDG, Svab Z, Harper EC, Hurwitz CD, Maliga P (1987) A dominant nuclear streptomycin resistance marker for plant cell transformation. Mol Gen Genet 210: 86–91

    Article  CAS  Google Scholar 

  • Kamakura T, Yoneyama K, Yamaguchi I (1990) Expression of the blasticidin S deaminase gene(bsr) in tobacco: Fungicide tolerance and a new selective marker for transgenic plants. Mol Gen Genet 223: 332-334

    Google Scholar 

  • Koncz C, Olsson O, Langridge WHR, Schell J, Szalay AA (1987) Expression and assembly of functional bacterial luciferase in plants. Proc Natl Acad Sci USA 84: 131–135

    Article  PubMed  CAS  Google Scholar 

  • Koziel MG, Adams TL, Hazlet MA, Damm D, Miller J, Dahlbeck D, Jayne S, Staskawicz BJ (1984) A Cauliflower Mosaic Virus promoter directs expression of kanamycin resistance in morpho-genic transformed plant cells. J Mol Appl Gen 2: 549–562

    CAS  Google Scholar 

  • Lloyd AM, Barnason AR, Rogers SG, Byrne MC, Fraley RT, Horsch RB (1986) Transformation ofArabidopsis thaliana withAgrobacterium tumefaciens. Science 234: 464–466

    Article  PubMed  CAS  Google Scholar 

  • Lloyd AM, Walbot V, Davis RW (1992)Arabidopsis andNicotiana anthocyanin production activated by maize regulators R and Cl. Science 258: 1773–1775

    Google Scholar 

  • Ludwig SE, Wessler SR (1990) MaizeR gene family tissue-specific helix-loop-helix proteins. Cell 62: 849–851

    Article  PubMed  CAS  Google Scholar 

  • Ludwig SE, Bowen B, Beach L, Wessler SR (1990) A regulatory gene as a novel visible marker for maize transformation. Science 247: 449–450

    Article  PubMed  CAS  Google Scholar 

  • Lyon BR, Llewellyn DJ, Huppatz JL, Dennis ES, Peacock WJ (1989) Expression of a bacterial gene in transgenic tobacco plants confers resistance to the herbicide 2,4-dichlorophenoxyacetic acid. Plant Mol Biol 13: 533–540

    Article  PubMed  CAS  Google Scholar 

  • Maliga P, Svab Z, Harper EC, Jones JDG (1988) Improved expression of streptomycin resistance in plants due to a deletion in the streptomycin phosphotransferase coding sequence. Mol Gen Genet 214: 456–459

    Article  PubMed  CAS  Google Scholar 

  • Mazodier P, Giraud E, Gasser F (1983) Genetic analysis of the streptomycin resistance encoded by Tn5. Mol Gen Genet 192: 155–162

    Article  CAS  Google Scholar 

  • McDonnell RE, Clark RD, Smith WA, Hinchee MA (1987) A simplified method for the detection of neomycin phosphotransferase II activity in transformed plant tissues. Plant Mol Biol Rep 5: 380–386

    Article  CAS  Google Scholar 

  • Meijer EGM, Schilperoort RA, Rueb S, van Os-Ruygrok PE, Hensgens LAM (1991) Transgenic rice cell lines and plants: expression of transferred chimeric genes. Plant Mol Biol 16: 807–820

    Article  PubMed  CAS  Google Scholar 

  • Millar AJ, Short SR, Hiratsuka K, Chua NH, Kay SA (1992) Firefly luciferase as a reporter of regulated gene expression in higher plants. Plant Mol Biol Rep 10: 324–337

    Article  CAS  Google Scholar 

  • Miner JN, Weinrich SL, Hruby DE (1988) Molecular dissection of cis-acting elements from 5’-proximal regions of a vaccinia virus late gene cluster. J Virol 62: 297

    PubMed  CAS  Google Scholar 

  • Mol JNM, Stuitje AR, Gerats AGM, Koes RE (1988) Cloned genes of phenylpropanoid metabolism. Plant Mol Biol Rep 6: 274–279

    Article  CAS  Google Scholar 

  • Moll B, Polsby L, Maliga P (1990) Streptomycin and lincomycin resistances are selective plastid markers in culturedNicotiana cells. Mol Gen Genet 221: 245–250

    Article  CAS  Google Scholar 

  • Murakami T, Anzai H, Imai S, Satoh A, Nagaoka D, Thompson CJ (1986) The bialaphos biosynthetic genes ofStreptomyces hygroscopicus: molecular cloning and characterization of the gene cluster. Mol Gen Genet 205: 42–50

    Article  CAS  Google Scholar 

  • Ow DW, Wood KV, DeLuca M, De Wet JR, Helinski DR, Howell SH (1986) Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science 234: 856–859

    Article  PubMed  CAS  Google Scholar 

  • Pattishall KH, Acar J, Burchall JJ, Goldstein FW, Harvey RJ (1977) Two distinct types of trimethoprim-resistant dihydrofolate reductase specified by R-plasmids of different compatibility groups. J Biol Chem 252: 2319–2323

    PubMed  CAS  Google Scholar 

  • Peng J, Kononowicz H, Hodges TK (1992) Transgenic Indica rice plants. Theor Appl Genet 83: 855–863

    Article  CAS  Google Scholar 

  • Peng J, Wen F, Hodges TK (1993) A rapid method for qualitative assay of both neomycin phosphostransferase II and (3-glucuronidase activities in transgenic plants. Plant Mol Biol Rep 11: 38–47

    Article  CAS  Google Scholar 

  • Perez P, Tiraby G, Kallerhoff J, Peret J (1989) Phleomycin resistance as a dominant selectable marker for plant cell transformation. Plant Mol Biol 13: 365–373

    Article  PubMed  CAS  Google Scholar 

  • Perl A, Galili S, Orit S, Ben-Tzvi I, Galili G (1993) Bacterial dihydropicolinate synthase and desensitized aspartate kinase: two novel selectable markers for plant transformation. Bio/ Technology 11: 715–718

    Article  CAS  Google Scholar 

  • Potrykus I, Saul MW, Petruska J, Paszkowski J, Shillito RD (1985) Direct gene transfer to cells of a graminaceous monocot. Mol Gen Genet 199: 183–188

    Article  CAS  Google Scholar 

  • Shimamoto K, Terada R, Izawa T, Fujimoto H (1989) Fertile transgenic rice plants regenerated from transformed protoplasts. Nature 338: 274–276

    Article  CAS  Google Scholar 

  • Simonsen CC, Levinson AD (1983) Isolation and expression of an altered mouse dihydrofolate reductase cDNA. Proc Natl Acad Sci USA 80: 2495–2499

    Article  PubMed  CAS  Google Scholar 

  • Sleigh MJ (1986) A nonchromatographic assay for expression of the chloramphenicol acetyltransferase gene in eucaryotic cells. Anal Biochem 156: 251

    Article  PubMed  CAS  Google Scholar 

  • Somers DA, Narayanan KR, Kleinhofs A, Cooper-Bland S, Cocking EC (1986) Immunological evidence for transfer of the barley nitrate reductase structural gene toNicotiana tabacum by protoplast fusion. Mol Gen Genet 204: 296–301

    Article  CAS  Google Scholar 

  • Stalker DM, McBride KE, Malyj LD (1988) Herbicide resistance in transgenic plants expressing a bacterial detoxification gene. Science 242: 419–423

    Article  PubMed  CAS  Google Scholar 

  • Svab Z, Hajdukiewicz P, Maliga P (1990a) Stable transformation of plastids in higher plants. Proc Natl Acad Sci USA 87: 8526–8530

    Article  PubMed  CAS  Google Scholar 

  • Svab Z, Harper EC, Jones JDG, Maliga P (1990b) Aminoglycoside-3’-adenyltransferase confers resistance to spectinomycin and streptomycin inNicotiana tabacum. Plant Mol Biol 14: 197–206

    Article  PubMed  CAS  Google Scholar 

  • Thompson CJ, Movva NR, Tizard R, Crameri R, Davies JE, Lauwereys M, Botterman J (1987) Characterization of the herbicide-resistance genebar fromStreptomyces hygroscopicus. EMBO J 6: 2519–2523

    PubMed  CAS  Google Scholar 

  • Thompson GA, Hiatt WR, Facciotti D, Stalker DM, Cornai L (1987) Expression in plants of a bacterial gene coding for glyphosate resistance. Weed Sci 35: 19-23 (suppl)

    Google Scholar 

  • Valvekens D, Van Montagu M, Van Lijsebettens M (1988)Agrobacterium tumefaciens-mediated transformation ofArabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci USA 85: 5536–5540

    Google Scholar 

  • Vasil V, Brown SE, Re D, Fromm ME, Vasil IK (1991) Stably transformed callus lines from microprojectile bombardment of cell suspension cultures of wheat. Bio/Technology 9: 743–747

    Article  CAS  Google Scholar 

  • Vasil V, Castillo AM, Fromm ME, Vasil IK (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Bio/ Technology 10: 667–674

    Article  CAS  Google Scholar 

  • Waldron C, Murphy EB, Roberts JL, Gustafson GD, Armour SL, Malcolm SK (1985) Resistance to hygromycin B: a new marker for plant transformation studies. Plant Mol Biol 5: 103–108

    Article  CAS  Google Scholar 

  • Walters DA, Vetsch CS, Potts DE, Lundquist RC (1992) Transformation and inheritance of a hygromycin phosphotransferase gene in maize plants. Plant Mol Biol 18: 189–200

    Article  PubMed  CAS  Google Scholar 

  • Wang ZY, Takamizo T, Iglesias VA, Osusky M, Nagel J, Potrykus I, Spangenberg G (1992) Transgenic plants of tall fescue(Festuca arundinacea Schreb.) obtained by direct gene transfer to protoplasts. Bio/Technology 10: 691–696

    Article  PubMed  CAS  Google Scholar 

  • Wilmink A, Dons JIM (1993) Selective agents and marker genes for use in transformation of monocotyledonous plants. Plant Mol Biol Rep 11: 165–185

    Article  CAS  Google Scholar 

  • Wohlleben W, Arnold W, Broer I, Hillemann D, Strauch E, Pithier A (1988) Nucleotide sequence of the phosphinothricin N-acetyltransferase gene fromStreptomyces viridochromogenes Tü494 and its expression inNicotiana tabacum. Gene 70: 25–37

    Article  PubMed  CAS  Google Scholar 

  • Wood KV (1991) Recent advances and prospects for use of beetle luciferases as genetic reporters. In: Stanley PE, Kricka J (eds) Bioluminescence and chemiluminescence: current status. Wiley, Chichester, pp 543–546

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schrott, M. (1995). Selectable Marker and Reporter Genes. In: Potrykus, I., Spangenberg, G. (eds) Gene Transfer to Plants. Springer Lab Manual. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79247-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79247-2_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-48967-9

  • Online ISBN: 978-3-642-79247-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics