Skip to main content

Standard Molecular Techniques for the Analysis of Transgenic Plants

  • Chapter
Gene Transfer to Plants

Abstract

In the following sections, a series of step-by-step protocols for standard molecular techniques widely used in the characterization of transgenic plants and in gene expression studies with plant cells are compiled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Lichtenstein C, Draper J (1985) Genetic engineering of plants. In: Glover DM (ed) DNA cloning, vol. II. IRL Press, Oxford, pp 67–119

    Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucl Acids Res 8: 4321–4325

    Article  PubMed  CAS  Google Scholar 

  • Chirgwin JM, Przybyla AE, MacDonald RJ, Rutter WJ (1979) Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18: 5294–5299

    Article  PubMed  CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single step method of RNA isolation by acid guanidinium thiocyanate-phenol-choloroform extraction. Anal Biochem 162: 156–159

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Lab, Cold Spring Harbor, Chap 7

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Lab, Cold Spring Harbor, 9.31–9.46

    Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98: 503–517

    Article  PubMed  CAS  Google Scholar 

  • Feinberg AP, Vogelstein B (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132: 6–13

    Article  PubMed  CAS  Google Scholar 

  • Hames BD, Higgins SJ (1985) Nucleic acid hybridization: a practical approach. IRL Press, Oxford, ISBN 0–947946–23–3

    Google Scholar 

  • Allefs IIHM, Salentijn EMI, Krens FA, Rouwendal GIA (1990) Optimization of non-radioactive Southern blot hybridization: single copy detection and reuse of blots. Nucl Acids Res 18: 3099–3100

    Article  PubMed  CAS  Google Scholar 

  • Bronstein I, McGrath P (1989) Chemiluminescence lights up. Nature 338: 599–600

    Article  PubMed  CAS  Google Scholar 

  • Bronstein I, Voyta IC, Lazzari KG, Murphy O, Edwards B, Kricka LI (1990) Rapid and sensitive detection of DNA in Southern blots with chemiluminescence. BioTechniques 8: 310–314

    Google Scholar 

  • Cate RL, Ehrenfels ChW, Wysk M, Tizard R, Voyta IC, Murphy OJ, Bronstein I (1991) Genomic Southern analysis with alkaline-phosphatase-conjugated oligonucleotide probes and the chemiluminescent substrate AMPPD. GATA 8: 102–106

    Google Scholar 

  • During K (1991) Ultrasensitive chemiluminescent and colorigenic detection of DNA, RNA and proteins in plant molecular biology Anal Biochem 196: 433–438

    CAS  Google Scholar 

  • Höltke HI, Sagner G, Kessler Ch, Schmitz G (1992) Sensitive chemiluminescent detection of digoxigenin-labelled nucleic acids: a fast and simple protocol and its application. BioTechniques 12: 104–113

    Google Scholar 

  • Ishii T, Panaud O, Brar DS, Kush GS (1990) Use of non-radioactive digoxigenin-labelled DNA probes for RFLP analysis in rice. Plant Mol Biol Rep 8: 167–171

    Article  CAS  Google Scholar 

  • Kessler C (1992) Nonradioactive labeling and detection of biomolecules. Springer Laboratory. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Kreike CM, de Koning IRA, Krens FA (1990) Non-radioactive detection of single-copy DNA-DNA hybrids. Plant Mol Biol Rep 8: 172–179

    Article  CAS  Google Scholar 

  • Neuhaus-Url G, Neuhaus G (1993) The use of the nonradioactive digoxigenin chemiluminescent technology for plant genomic Southern blot hybridization: a comparison with radioactivity. Transgen Res 2: 115–120

    Article  Google Scholar 

  • Panaud O, Magpantay G, McCouch S (1993) A protocol for non-radioactive DNA labelling and detection in the RFLP analysis of rice and tomato using single-copy probes. Plant Mol Biol Rep 11: 54–59

    Article  CAS  Google Scholar 

  • Pollard-Knight D (1990) Current methods in nonradioactive nucleic acid labelling and detection. Techniques 3: 113–132

    Google Scholar 

  • Zachar V, Mayer V, Aboagye-Mathiesen G, Norskov-Lauritsen N, Ebbesen P (1991) Enhanced chemiluminescence-based hybridization analysis for PCR-mediated HIV-1 DNA detection offers an alternative to 32P-labelled probes. J Virol Methods 33: 391–395

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Lab, Cold Spring Harbor

    Google Scholar 

  • Baldo BA, Tovey ER (eds) (1989) Protein blotting. Karger, Basel Biorad. Mini Trans-blot instruction manual

    Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets. Procedure and some applications. Proc Natl Acad Sci USA 76: 4350–4354

    Google Scholar 

  • Bourouis M, Jarry B (1983) Vectors containing a prokaryotic dihydrofolate reductase gene transform Drosophila cells to methotrexate-resistance. EMBO J 2: 1099–1104

    PubMed  CAS  Google Scholar 

  • Klimyuk V, Carrol B, Thomas C, Jones JDG (1993) Alkali treatment for rapid preparation of plant material for reliable PCR analysis. Plant J 3: 493–494

    Article  PubMed  CAS  Google Scholar 

  • Mullis K, Faloona F (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 155: 335–348

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254

    Article  PubMed  CAS  Google Scholar 

  • De Block M, Botterman J, Vandewiele M, Dockx J, Thoen C, Gossele V, Rao Movva N, Thompson C, Van Montagu M, Leemans J (1987) Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J 6: 2513–2518

    PubMed  CAS  Google Scholar 

  • Thompson CJ, Rao Movva N, Tizard R, Crameri R, Davies JE, Lauwereys M, Botterman J (1987) Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus. EMBO J 6: 2519–2523

    PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254

    Article  PubMed  CAS  Google Scholar 

  • Cabanes-Bastos E, Day AG, Lichtenstein CP (1989) A sensitive and simple assay for neomycin phosphotransferase II activity in transgenic tissue. Gene 77: 169–177

    Article  PubMed  CAS  Google Scholar 

  • Gritz L, Davies J (1983) Plasmid-encoded hygromycin B resistance: the sequence of hygromycin B phosphotransferase gene and its expression in Escherichia coli and Saccharomyces cerevisiae. Gene 25: 179–188

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254

    Article  PubMed  CAS  Google Scholar 

  • Cabanes-Bastos E, Day AG, Lichtenstein CP (1989) A sensitive and simple assay for neomycin phosphotransferase II activity in transgenic tissue. Gene 77: 169–176

    Article  PubMed  CAS  Google Scholar 

  • Henderson L, Rao AG, Howard J (1991) An immunoaffinity immobilized enzyme assay for neomycin phosphotransferase II in crude cell extracts. Anal Biochem 194: 64–68

    Article  PubMed  CAS  Google Scholar 

  • McDonnell RE, Clark RD, Smith WA, Hinchee MA (1987) A simplified method for the detection of neomycin phosphotransferase II activity in transformed plant tissues. Plant Mol Biol Rep 5: 380–386

    Article  CAS  Google Scholar 

  • Mittelsten Scheid O, Neuhaus-Url G (1995) The detection of neomycin phosphotransferase activity in plant extracts. In: Gartland K, Davey M (eds) Agrobacterium protocols. Methods in molecular biology. Humana, New Jersey (in press)

    Google Scholar 

  • Platt SG, Yang NS (1987) Dot assay for neomycin phosphotransferase activity in crude cell extracts. Anal Biochem 162: 529–535

    Article  PubMed  CAS  Google Scholar 

  • Ramesh N, Osborne WRA (1991) Assay of neomycin phosphotransferase activity in cell extracts. Anal Biochem 193: 316–318

    Article  PubMed  CAS  Google Scholar 

  • Reiss B, Sprengel R, Will H, Schaller H (1984) A new sensitive method for qualitative and quantitative assay of neomycin phosphotransferase in crude cell extracts. Gene 30: 211218

    Google Scholar 

  • Staebell M, Tomes D, Weissinger A, Maddock S, Marsh W, Huffman G, Bauer R, Ross M, Howard J (1990) A quantitative assay for neomycin phosphotransferase activity in plants. Anal Biochem 185: 319–323

    Article  PubMed  CAS  Google Scholar 

  • Balazs E, Bonneville JM (1987) Chloramphenicol acetyl transferase activity in Brassica spp. Plant Sci 50: 65–68

    Article  CAS  Google Scholar 

  • Gorman C, Moffat L, Howard B (1982) Recombinant genomes which express chloramphenicol acetyl transferase in mammalian cells. Mol Cell Biol 2: 1044–1051

    PubMed  CAS  Google Scholar 

  • Hruby DE, Wilson EM (1992) Use of fluorescent chloramphenicol derivative as the substrate for chloramphenicol acetyltransferase assays. Methods Enzymol 216: 369–376

    Article  PubMed  CAS  Google Scholar 

  • Sleigh MJ (1986) A nonchromatographic assay for expression of the chloramphenicol acetyltransferase gene in eukaryotic cells. Anal Biochem 156: 251–256

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5: 387–405

    Article  CAS  Google Scholar 

  • Martin T, Wöhner RV, Hummel S, Willmitzer L, Frommer WB (1992) The GUS reporter system as a tool to study plant gene expression. In: Gallagher SR (ed) GUS protocols: using the GUS gene as a reporter of gene expression. Academic Press San Diego, pp 23–43

    Google Scholar 

  • Mendel RR, Müller B, Schulze J, Kolesnikow V, Zelenin A (1989) Delivery of foreign genes to intact barley cells by high-velocity microprojectiles. Theor Appl Genet 78: 31–34

    Article  CAS  Google Scholar 

  • Stomp AM (1992) Histochemical localization of ß-glucuronidase. In: Gallagher SR (ed) GUS protocols: using the GUS gene as a reporter of gene expression. Academic Press, San Diego, pp 103–113

    Google Scholar 

  • Aflalo C (1991) Biologically localized firefly luciferase: a tool to study cellular processes. Int Rev Cytol 130: 269–323

    Article  PubMed  CAS  Google Scholar 

  • Belas R, Mileham A, Cohn D, Hilmen M, Simon M, Silverman M (1982) Bacterial bioluminescence: Isolation and expression of the luciferase genes from Vibrio harveyi. Science 218: 791–792

    Article  PubMed  CAS  Google Scholar 

  • De Wet JR, Wood KV, DeLuca M, Helinski DR, Subramani S (1987) Firefly luciferase gene: structure and expression in mammalian cells. Mol Cell Biol 7: 725–737

    PubMed  Google Scholar 

  • Millar AJ, Short SR, Hiratsuka K, Chua N-H, Kay SA (1992) Firefly luciferase as a reporter of regulated gene expression in higher plants. Plant Mol Biol Rep 10: 324–337

    Article  CAS  Google Scholar 

  • Ow D, Wood KV, DeLuca M, de Wet JR, Helinski DR, Howell SH (1986) Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science 234: 856–859

    Article  PubMed  CAS  Google Scholar 

  • Schneider M, Ow DW, Howell SH (1990) The in vivo pattern of firefly expression in transgenic plants. Plant Mol Biol 14: 935–47

    Article  PubMed  CAS  Google Scholar 

  • Stanley PE (1992) A survey of more than 90 commercially available luminometers and imaging devices for low-light measurements of chemiluminescence and bioluminescence, including instruments for manual, automatic and specialized operation, for HPLC, LC, GLC and microtitre plates. Part 1: Descriptions. J Biolumin Chemilumin 7: 77–108

    Article  PubMed  CAS  Google Scholar 

  • Stanley PE (1993) Commercially available luminometers and imaging devices for low-light measurements and kits and reagents utilizing bioluminescence or chemiluminescence–survey update 1. J Biolumin Chemilumin 8: 237–240

    Article  PubMed  CAS  Google Scholar 

  • Wood KV (1991) Recent advances and prospects for use of beetle luciferases as genetic reporters. In: Stanley PE, Kricka J (eds) Bioluminescence and chemiluminescence: current status Wiley, Chichester, 543–546

    Google Scholar 

  • Wood KV, Amy Lam Y, Seliger HH, McElroy WD (1989) Complementary DNA coding click beetle luciferases can elicit bioluminescence of different colors. Science 244: 700–702

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fütterer, J. et al. (1995). Standard Molecular Techniques for the Analysis of Transgenic Plants. In: Potrykus, I., Spangenberg, G. (eds) Gene Transfer to Plants. Springer Lab Manual. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79247-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79247-2_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-48967-9

  • Online ISBN: 978-3-642-79247-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics