Skip to main content

Renal Epithelial Repair After Acute Tubular Necrosis

  • Chapter
  • 129 Accesses

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 20))

Abstract

The mortality rate of acute renal failure (ARF) remains unchanged despite the advent of dialysis, and it is the most costly condition amongst patients hospitalized with kidney disease [1]. Thus, measures to speed recovery of the injured kidney could have a significant impact on medical care. Cellular proliferation is often a prominent feature in the regenerating nephron, despite the systemic catabolic milieu [2–5]. Studies during the past 40 years have identified some of the factors that could mediate recovery and proliferation of epithelial cells in this setting. Better definition of these factors may eventually provide the physician with knowledge necessary to alter the local environment of tubular epithelial cells to speed recovery of renal function. This chapter will review some of what is known about factors that regulate cellular repair and regeneration after acute renal injury.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. National Kidney and Urologic Diseases Advisory Board (1990) Long-range plan: window on the 21st century. NIH Publ 90(583):47–48

    Google Scholar 

  2. Oliver J, MacDowell M, Tracy A (1951) The pathogenesis of acute renal failure associated with traumatic and toxic injury. Renal ischemia, nephrotoxic damage and the ischemuric episode. J Clin Invest 30:1305–1440

    Article  Google Scholar 

  3. Cuppage FE, Tate A (1967) Repair of the nephron following injury with mercuric chloride. Am J Pathol 51:405–429

    PubMed  CAS  Google Scholar 

  4. Siegel FL, Bulger RE (1975) Scanning and transmission electron microscopy of mercuric chloride-induced tubular necrosis in rat kidney. Virchows Arch [Cell Pathol] 18:243–262

    CAS  Google Scholar 

  5. Haagsma BH, Pound AW (1980) Mercuric chloride-induced tubulonecrosis in the rat kidney: the recovery phase. Br J Exp Pathol 61:229

    PubMed  CAS  Google Scholar 

  6. Solez K, Whelton A (1984) Acute renal failure: correlations between morphology and function. Dekker, New York

    Google Scholar 

  7. Weinberg JM (1991) The cell biology of ischemic renal injury. Kidney Int 39:476–500

    Article  PubMed  CAS  Google Scholar 

  8. Solez K, Marel-Maroger L, Sraer J-D (1979) The morphology of “acute tubular necrosis” in man: analysis of 57 renal biopsies and a comparison with the glycerol model. Medicine (Baltimore) 58:362–376

    CAS  Google Scholar 

  9. Darmady EM, Strank F (1975) Microdissection of the nephron in disease. Br Med Bull 13:21–26

    Google Scholar 

  10. Molitaris BA, Nelson WJ (1990) Alterations in the establishment and maintenance of epithelial cell polarity as a basis for disease processes. J Clin Invest 85:3–9

    Article  Google Scholar 

  11. Goligorsky MS, DiBona GF (1993) Pathogenetic role of Arg-Gly-Asp-recognizing integrins in acute renal failure. Proc Natl Acad Sci USA 90:5700–5704

    Article  PubMed  CAS  Google Scholar 

  12. Mendley SR, Toback FG (1989) Autocrine and paracrine regulation of kidney epithehal cell growth. Annu Rev Physiol 51:33–50

    Article  PubMed  CAS  Google Scholar 

  13. Van Why SK, Hildebrandt F, Ardito T, Mann AS, Siegel NJ, Kashgarian M (1992) Induction and intracellular localization of HSP-72 after renal ischemia. Am J Physiol 263:F769-F775

    PubMed  Google Scholar 

  14. Prescott LF (1966) The normal urinary excretion rates of renal tubular cells, leukocytes, and red blood cells. Chn Sci 31:425–435

    CAS  Google Scholar 

  15. Gaiht J, Colfesh D, Rabiner I, Simone J, Goligorsky MS (1993) Redistribution and dysfunction of integrins in cultured renal epithelial cells exposed to oxidative stress. Am J Physiol 264:F149-F157

    Google Scholar 

  16. Toback FG (1985) Control of renal regeneration after acute tubular necrosis. Nephrology 1:748–763

    Google Scholar 

  17. Toback FG, Havener FL, Dodd RC, Spargo BH (1977) Phosphohpid metabolism during renal regeneration after acute tubular necrosis. Am J Physiol 232:E216-E222

    CAS  Google Scholar 

  18. Cuppage FE, Cunningham N, Tate AL (1969) Nucleic acid synthesis in the regenerating nephron following injury with mercuric chloride. Lab Invest 21:449–457

    PubMed  CAS  Google Scholar 

  19. Toback FG, Dodd RC, Maier ER, Havener LJ (1983) Amino acid administration enhances renal protein metabohsm after acute tubular necrosis. Nephron 33:238–243

    Article  PubMed  CAS  Google Scholar 

  20. Toback FG (1980) Amino acid treatment of acute renal failure. Contemp Issues Nephrol 6:202–228

    CAS  Google Scholar 

  21. Toback FG (1987) Amino acid enhancement of renal regeneration after acute tubular necrosis. Kidney Int 12:193–198

    Article  Google Scholar 

  22. Yarden Y, Ullrich A (1988) Molecular analysis of signal transduction by growth factors. Biochemistry 27:3113–3119

    Article  PubMed  CAS  Google Scholar 

  23. Berridge MJ (1987) Inositol triphosphate and diacylglycerol: two interacting second messengers. Annu Rev Biochem 56:159–193

    Article  PubMed  CAS  Google Scholar 

  24. McCreight CE, Sulkin NM (1959) Cellular prohferation in the kidney of young and senile rats following unilateral nephrectomy. J Gerontol 14:440–443

    Google Scholar 

  25. Sporn MB, Todaro GJ (1980) Autocrine secretion and malignant transformation of cells. N Engl J Med 303:878–880

    Article  PubMed  CAS  Google Scholar 

  26. Massague J (1990) Transforming growth factor-a. J Biol Chem 265:21292–21396

    Google Scholar 

  27. Rail LB, Scott J, Bell GI, Crawford RJ, Penshow JD, Niall HD, Coghlan JP (1985) Mouse prepro-epidermal growth factor synthesis by the kidney and other tissues. Nature 313:228–231

    Article  Google Scholar 

  28. Toback FG, Walsh-Reitz MM, Mendley SR, Kartha SR (1990) Kidney epithehal cells release growth factors in response to extracellular signals. Pediatr Nephrol 4:363–371

    Article  PubMed  CAS  Google Scholar 

  29. Mendley SR, Toback FG (1990) Cell proliferation in the end stage kidney. Am J Kidney Dis 16:80–84

    PubMed  CAS  Google Scholar 

  30. Hopps HE, Bernheim BC, Nisalak A, Tijo JH, Smadel JE (1963) Biologic characteristics of a continuous kidney cell hne derived from the African green monkey. J Immunol 91:416–424

    PubMed  CAS  Google Scholar 

  31. Rollason HD (1949) Compensatory hypertrophy of the kidney of the young rat with special emphasis on the role of cellular hyperplasia. Anat Ree 104:263–285

    Article  CAS  Google Scholar 

  32. Toback FG (1980) Induction of growth of kidney cells in culture by Na+. Proc Natl Acad Sci USA 77:6654–6656

    Article  PubMed  CAS  Google Scholar 

  33. Leighton J, Brada A, Estes LW, Justh G (1969) Secretory activity and oncogenicity of a cell line (MDCK) derived from dog kidney. Science 163:472–473

    Article  PubMed  CAS  Google Scholar 

  34. Walsh-Reitz MM, Toback FG (1984) Kidney epithelial cell growth is stimulated by lowering extracellular potassium concentration. Am J Physiol 247:C14-C19

    Google Scholar 

  35. Walsh-Reitz MM, Gluck SL, Waack S, Toback FG (1986) Lowering extracellular Na+ concentration releases autocrine grwoth factors from renal epithelial ceUs. Proc Natl Acad Sci USA 83:4764–4768

    Article  PubMed  CAS  Google Scholar 

  36. Kartha SR, Toback FG (1985) Purine nucleotides stimulate DNA synthesis in kidney epithehal cells in culture. Am J Physiol 249:F967-F972

    PubMed  CAS  Google Scholar 

  37. Rangekar VV, Waheed S, Davies TJ, Toback FG, Rangekar VM (1991) Antimitogenic and mitogenic actions of interleukin-1 in diverse cell types are associated with induction of gro gene expression. J Biol Chem 266:2415–2422

    Google Scholar 

  38. Schräder GA, Prickett CO, Salmon WD (1937) Symptomatology and pathology of potassium and magnesium deficiencies in the rat. J Nutr 14:85–110

    Google Scholar 

  39. Ohver J, MacDowell M, Welt LG, Holliday MA, Hollander W Jr, Winters RW, Wilhams TF, Segar WE (1957) The renal lesions of electrolyte imbalance. L The structural alterations in potassium-depleted rats. J Exp Med 106:563–574

    Article  Google Scholar 

  40. Spargo BH (1954) Kidney changes in hypokalemic alkalosis in the rat. J Lab Clin Med 43:802–814

    PubMed  CAS  Google Scholar 

  41. Hanks SK, Amour R, Baldwin JH, Maldonado F, Spiess J, Holley RW (1988) Amino acid sequence of the BSC-1 cell growth inhibitor (polyergin) deduced from the nucleotide sequence of the cDNA. Proc Natl Acad Sci USA 85:79–82

    Article  PubMed  CAS  Google Scholar 

  42. Cone CD Jr, Tongier M Jr (1973) Contact inhibition of division: involvement of the electrical transmembrane potential. J Cell Physiol 82:373–386

    Article  PubMed  CAS  Google Scholar 

  43. Smith JB, Rozengurt E (1978) Serum stimulates the Na+/K+ pump in quiescent fibroblasts by increasing Na+ entry. Proc Natl Acad Sci USA 75:5560–5564

    Article  PubMed  CAS  Google Scholar 

  44. Holley RW, Armour R, Baldwin JH (1978) Density-dependent regulation of growth of BSC-1 cells in culture: control of growth by low-molecular weight nutrients. Proc Natl Acad Sci USA 75:339–341

    Article  PubMed  CAS  Google Scholar 

  45. Koch KS, Leffert HL (1979) Increased sodium ion influx is necessary to initiate rat hepatocyte prohferation. CeU 18:153–163

    CAS  Google Scholar 

  46. Rozengurt E, Heppel LA (1975) Serum rapidly stimulates ouabain-sensitive RB influx in quiescent 3T3 cells. Proc Natl Acad Sci USA 72:4492–4495

    Article  PubMed  CAS  Google Scholar 

  47. McKeehan WL, McKeehan KA, Calkins D (1981) Extracellular regulation of fibroblast multiphcation. Quantitative differences in nutrient and serum factor requirements for multiplication and normal SV40 virus transformed human lung cells. J Biol Chem 256: 2973–2981

    PubMed  CAS  Google Scholar 

  48. Weber MJ, Evans PK, Johnson MA, McNair TF, Nakamura KD, Salter DW (1984) Transport of potassium, amino acids, and glucose in cells transformed by Rous sarcoma virus. Fed Proc 43:107–112

    PubMed  CAS  Google Scholar 

  49. Ciesinski DA, Messana JM, Humes HD (1987) Adenosine triphosphate stimulates thymidine incorporation but does not promote cell growth in primary cultures of rabbit proximal tubule cells. Kidney Int 33:389a

    Google Scholar 

  50. Kartha S, Sukhatme VP, Toback FG (1987) ADP activates protooncogene expression in renal epithehal cells. Am J Physiol 252:F1175-F1179

    PubMed  CAS  Google Scholar 

  51. Sukhatme VP, Kartha S, Toback FG, Taub R, Hoover RV, Tsai-Morris C (1987) A novel early growth response gene rapidly induced by fibroblast, epithehal cell and lymphocyte mitogens. Oncogene Res 1:343–355

    PubMed  CAS  Google Scholar 

  52. Kartha S, Bradham DM, Grotendorst GR, Toback FG (1988) Kidney epithehal cehs express the c-sis proto-oncogene and secrete PDGF-hke protein: evidence for a paracrine mechanism. Am J Physiol 255:F800-F806

    PubMed  CAS  Google Scholar 

  53. Deuel TF, Pierce GF, Hsiu-Jeng Y, Shawver LK, Milner PG, Kimura A (1987) Platelet- derived growth factor/5/5 in normal and neoplastic ceil growth. J Cell Physiol Suppl 5:95–99

    Article  PubMed  Google Scholar 

  54. Mustoe TA, Pierce GF, Thomason A, Gramates P, Sporn MB, Deuel TF (1987) Accelerated heahng of incisional wounds in rats induced by transforming growth factor-beta. Science 237:1333–1336

    Article  PubMed  CAS  Google Scholar 

  55. Johnson A, Heldin C-H, Wasteson A, Westermark B, Deuel TF (1984) Thec-sis gene encodes a precursor of the B chain of platelet-derived growth factor. EMBO J 3:921–928

    Google Scholar 

  56. Josephs SF, Grio C, Ratner L, Wong-Staal F (1984) Human protooncogene nucleotide sequences corresponding to the transforming region of simian arcoma virus. Science 223:487–490

    Article  PubMed  CAS  Google Scholar 

  57. Seifert RA, Hart CE, Phillips PE, Forstrom JW, Ross R, Murray MJ, Bowen-Pope DF (1989) Two different subunits associate to create isoform-specific PDGF receptors. J Biol Chem 265:8771–8778

    Google Scholar 

  58. Matsui T, Heidaran M, Miki T, Popescu N, LaRochelle W, Kraus M, Pierce J, Aaronson S (1989) Isolation of a novel receptor cDNA establishes the existence of two PDGF receptor genes. Science 243:800–804

    Article  PubMed  CAS  Google Scholar 

  59. Leof EB, Proper JA, Goustin AS, Shipley GD, DiCorleto PE, Moses HL (1986) Induction of c-sis mRNA and activity similar to platelet derived growth factor by transforming growth factor beta: a proposed model for indirect mitogenesis involving autocrine activity. Proc Nad Acad Sci USA 83:2453–2457

    Article  CAS  Google Scholar 

  60. Makela TP, Alitalo R, Paulsson Y, Westermark B, Heldin C-H, Alitalo K (1987) Regulation of platelet-derived growth factor gene expression by transforming growth factor beta in human leukemia cell hnes. Mol Cell Biol 7:3653–3662

    Google Scholar 

  61. Frazier GE, Bowen-Pope DF, Vogel AM (1987) Production of platelet-derived growth factor by cultured Wilms’ tumor cells and fetal kidney cells. J Cell Physiol 133:169–174

    Article  Google Scholar 

  62. Nakai A, Kartha S, Sakurai A, Toback FG, DeGroot L (1990) A human early response gene homologous to murine nur77 and rat NGFI-B, and related to the nuclear receptor superfamily. Mol Endocrinol 4:1438–1443

    CAS  Google Scholar 

  63. Kartha S, Toback FG (1992) Adenine nucleotides stimulate migration in wounded cultures of kidney epithelial cells. J Chn Invest 90:288–292

    Article  CAS  Google Scholar 

  64. Dinarello CA (1988) Interleukin-1. Rev Infect Dis 6:51–95

    Article  Google Scholar 

  65. Lovett DH, Szamel M, Ryan JL, Sterzel RB, Gemsa D, Resch K (1986) Interleukin 1 and the glomerular mesangium. I. Purification and characterization of a mesangial cell-derived auto-growth factor. J Immunol 136:3700–3705

    PubMed  CAS  Google Scholar 

  66. Anisowicz A, Bardwell L, Sager R (1987) Constitutive overexpression of a growth- regulated gene in transformed Chinese hamster and human cells. Proc Natl Acad Sci USA 84:7188–7192

    Article  PubMed  CAS  Google Scholar 

  67. Richmond A, Balentein E, Thomas HG, Flaggs G, Barton DE, Spiess J, Bardoni R, Francke U, Derynck R (1988) Molecular characterization and chromosomal mapping of melanoma growth stimulatory activity, a growth factor structurally related to beta- thromboglobuhn. EMBO J 7:2025–2033

    PubMed  CAS  Google Scholar 

  68. Cochran BH, Reffel AC, Stiles CD (1983) Molecular cloning of gene sequences regulated by platelet-derived growth factor. Cell 33:939–947

    Article  PubMed  CAS  Google Scholar 

  69. Fisher DA, Salido EC, Barajas L (1989) Epidermal growth factor and the kidney. Annu Rev Physiol 51:67–80

    Article  PubMed  CAS  Google Scholar 

  70. Breyer MD, Redha R, Breyer JA (1990) Segmental distribution of epidermal growth factor binding sites in rabbit nephron. Am J Physiol 259:F553-F558

    PubMed  CAS  Google Scholar 

  71. Spur NK, Solomon E, Jansson M, Sheer D, Goodfellow PN, Bodmer WF, Vennstrom B (1984) Chromosomal localization of the human homologues to the oncogenes erb A and B. EMBO J 3:159–163

    Google Scholar 

  72. Holley RW, Amour R, Baldwin JH, Brown KD, Yeh Y-C (1977) Density-dependent regulation of growth of BSC-1 cells in cell culture: control of growth by serum factors. Proc Nad Acad Sci USA 74:5046–5050

    Article  CAS  Google Scholar 

  73. Saferstein R, Price PM, Saggi SJ, Harris RC (1990) Changes in gene expression after temporary renal ischemia. Kidney Int 37:1551–1521

    Google Scholar 

  74. Saferstein R, Zelent AZ, Price PM (1989) Reduced prepro-epidermal growth factor mRNA and decreased EGF excretion in ARF. Kidney Int 36:810–815

    Article  Google Scholar 

  75. Humes HD, Cielinski DA, Coimbra TM, Messana JM, Galvao C (1989) Epidermal growth factor enhances renal tubular cell regeneration and repair and accelerates the recovery of renal function in postischemic acute renal failure. J Clin Invest 84:1757–1761

    Article  PubMed  CAS  Google Scholar 

  76. Norman J, Tsau Y-K, Bacay A, Fine LG (1990) Epidermal growth factor accelerates functional recovery from ischemic acute tubular necrosis in the rat: role of the epidermal growth factor receptor. Clin Sci 78:445–450

    CAS  Google Scholar 

  77. Coimbra TM, Cieslinski DA, Humes HD (1990) Epidermal growth factor accelerates renal repair in mercuric chloride nephrotoxicity. Am J Physiol 259:F438-F443

    PubMed  CAS  Google Scholar 

  78. Stern PH, Krieger NS, Nissenson RA, Wilhams RD, Winkler MS, Derynck R, Strewler GJ (1985) Human transforming growth factor-alpha stimulate bone resorption in vitro. J Clin Invest 76:2016–2019

    Article  CAS  Google Scholar 

  79. Tashijan AH, Voelkel EF, Lloyd W, Derynck R, Winkler ME, Levine L (1986) Actions of growth factors on plasma calcium. J Clin Invest 78:1405–1409

    Article  Google Scholar 

  80. Insogna KL, Stewart AF, Morris CA, Hough LM, Milstone LM, Centre UM (1989) Native and a synthetic analogue of the malignancy-associated parathyroid hormonelike protein have in vitro transforming growth factor-like properties. J Clin Invest 83: 1057–1060

    Article  PubMed  CAS  Google Scholar 

  81. Holley RW, Armour R, Baldwin JH (1978) Density-dependent regulation of growth of BSC-1 cells in cell culture: growth inhibitors formed by the cells. Proc Natl Acad Sci USA 75:1864–1866

    Article  PubMed  CAS  Google Scholar 

  82. Holley RW, Böhlen P, Fava R, Baldwin JH, Kleeman G, Armour R (1980) Purification of kidney epithelial cell growth inhibitors. Proc Natl Acad Sci USA 77:5989–5992

    Article  PubMed  CAS  Google Scholar 

  83. Walsh-Reitz MM, Toback FG, Holley RW (1984) Cell growth and net Na+ flux are inhibited by a protein produced by kidney epithehal cells in culture. Proc Natl Acad Sci USA 75:1864–1866

    Google Scholar 

  84. Tucker RF, Shipley GD, Moses HL, Holley RW (1984) Growth inhibitor from BSC-1 cells closely related to platelet type ß transforming growth factor. Science 226:705–707

    Article  PubMed  CAS  Google Scholar 

  85. Dernyck R, Jarrett JA, Chen EY, Eaton DH, Bell JR, Assoian RK, Roberts AB, Sporn MB, Goeddel DV (1985) Human transforming growth factor-ß complimentary DNA sequence and expression in normal and transformed cells. Nature 316:701–705

    Article  Google Scholar 

  86. Elhngsworth LR, Brennan JE, Fok K, Rosen DM, Bentz H, Piez KA, Seyedin SM (1989) Antibodies to the N-terminal portion of cartilage-inducing factor-A and transforming growth factor ß. J Biol Chem 261:661–669

    Google Scholar 

  87. Thompson NL, Flanders KC, Smith JM, EUingworth LR, Roberts AB, Sporn MB (1989) Expression of transforming growth factor ßl in specific cells and tissues of adult and neonatal mice. J Cell Biol 108:661–669

    Article  PubMed  CAS  Google Scholar 

  88. Fine LG, Holley RW, Nasri H, Badie-Dezfooly B (1985) BSC-1 growth inhibitor transforms a mitogenic stimulus into a hypertrophic stimulus for renal proximal tubular ceUs: relationship to Na+/H+ antiport activity. Proc Natl Acad Sci USA 82:6163–6166

    Article  PubMed  CAS  Google Scholar 

  89. Ignotz R, Massague J (1986) Transforming growth factor-beta stimulates the expression of fibronectin and collagen and their incorporation into the extraceUular matrix. J Biol Chem 261:4337–4345

    PubMed  CAS  Google Scholar 

  90. Pierce GF, Mustoe TA, Lingelbach J, Masakowski VR, Griffin GL, Senior RM, Deuel TF (1989) Platelet derived growth factor and transforming growth factor-ß enhance tissue repair activities by unique mechanisms. J Cell Biol 109:429–440

    Article  PubMed  CAS  Google Scholar 

  91. Border WA, Okuda S, Languino LR, Sporn MB, Ruoslahti E (1990) An antiserum against transforming growth factor ßl suppresses experimental glomerulonephritis. Nature 346:371–374

    Article  PubMed  CAS  Google Scholar 

  92. Wilcox JH, Dernyck R (1988) Developmental expression of transforming growth factors alpha and beta in mouse fetus. Mol Cell Biol 8:3415–3422

    CAS  Google Scholar 

  93. GomeUa LG, Sargent ER, Wade T, Anglard P, Linehan WM, Kasis A (1989) Expression of transforming growth factor a in normal human adult kidney and enhanced expression of transforming growth factors a and ßl in renal ceU carcinoma. Cancer Res 49:6972–6975

    Google Scholar 

  94. Baxter RC (1986) The somatomedins: insulin-like growth factors. Adv Chn Chem 25: 49–115

    CAS  Google Scholar 

  95. Rinderknecht E, Humbel RE (1978) The amino acid sequence of human insulin-like growth factor II. FEBS Lett 89:2769–2776

    Article  Google Scholar 

  96. Rinderknecht E, Humbel RE (1978) Primary structure of human insulin-hke growth factor II. FEBS Lett 89:283–286

    Article  PubMed  CAS  Google Scholar 

  97. Rechler MM, Nissley SP (1986) Insulin-hke growth factor (IGF)/somatomedin receptor subtypes: structure, function, and relationships to insuhn receptors and IGF carrier proteins. Horm Res 24:152–159

    Article  PubMed  CAS  Google Scholar 

  98. D’Ercole AJ, Siles AD, Underwood LE (1984) Tissue concentrations of somatomedin C: further evidence for multiple sites of synthesis and paracrine or autocrine mechanisms of action. Proc Natl Acad Sci USA 81:935–939

    Article  PubMed  Google Scholar 

  99. Hammerman MR, Rogers S (1987) Distribution of IGF receptors in the plasma membrane of proximal tubular cells. Am J Physiol 253:F841-F847

    PubMed  CAS  Google Scholar 

  100. Murphy LJ, Bell GI, Duckworth ML, Friesen HG (1987) Identification, characterization, and regulation of a rat complimentary deoxyribonucleic acid which encodes insuhn-like growth factor-I. Endocrinology 121:684–691

    Article  PubMed  CAS  Google Scholar 

  101. Bell GI, Gerhard DS, Fong NM, Sanchez-Pescador R, Rail LB (1985) Isolation of the human insulin-like growth factor genes: insulin-like growth factor II and insuhn genes are contiguous. Proc Natl Acad Sci USA 82:6450–6454

    Article  PubMed  CAS  Google Scholar 

  102. Bortz JD, Rotwein P, DeVol D, Bechtel PJ, Hansen BA, Hammerman NR (1988) Focal expression of insuhn-like growth factor I in the rat kidney collecting duct. J Cell Biol 107:811–819

    Article  PubMed  CAS  Google Scholar 

  103. Scott J, Cowell J, Robertson ME, Priestly LM, Wadley R, Hopkins B, Pritchard J, Bell GI, Rail LB, Graham CF, Knott TJ (1985) Insulin-hke growth factor-II gene expression in Wilm’s tumour and embryonic tissues. Nature 317:260–262

    Article  PubMed  CAS  Google Scholar 

  104. Segal R, Fine LG (1989) Polypeptide growth factors and the kidney. Kidney Int 36 Suppl 27:S2-S10

    CAS  Google Scholar 

  105. Andersson G, Jennische E (1988) IGF-I immunoreactivity is expressed by regenerating renal tubular cells after ischemic injury in the rat. Acta Physiol Scand 132:453–457

    Article  PubMed  CAS  Google Scholar 

  106. Miller SB, Martin DR, Kissane J, Hammerman MR (1993) Insulin-hke growth factor I accelerates recovery from ischemic acute tubular necrosis in the rat. Proc Natl Acad Sci USA 89:11876–11880

    Article  Google Scholar 

  107. Ding H, Kopple JD, Cohen A, Hirschberg R (1993) Recombinant human insulin-hke growth factor-I accelerates recovery and reduces catabolism in rats with ischemic acute renal failure. J Clin Invest 91:2281–2287

    Article  PubMed  CAS  Google Scholar 

  108. Kopple JD, Hirschberg R (1990) Physiological effects of growth hormone and insuhn-hke growth factor-I on the kidney. Miner Electrolyte Metab 16:82–88

    PubMed  CAS  Google Scholar 

  109. Hammerman MR, Miller SB (1993) The growth hormone insuhn-hke growth factor axis revisited. Am J Physiol 265:F1-F14

    PubMed  CAS  Google Scholar 

  110. Abboud HE, Poptic E, DiCorleto P (1987) Production of platelet-derived growth factor like protein by rat mesangial cells in culture. J Chn Invest 80:675–683

    Article  CAS  Google Scholar 

  111. Abraham JA, Mergia A, Whang JL, Tumulo A, Friedaman J, Hjerrild KA, Gospodarowicz D, Fiddes JC (1986) Nucleotide sequence of a bovine clone encoding the angiogenic protein, basic fibroblast growth factor. Science 233:5451–548

    Article  Google Scholar 

  112. Baird A, Ling N (1987) Fibroblast growth factors are present in the extracellular matrix produced by endothehal cells in vitro: implications for a role of heparinase-like enzymes in the neovascular response. Biochem Biophys Res Commun 142:428–435

    Article  PubMed  CAS  Google Scholar 

  113. Jaye M, Howk R, Burgess W, Ricca GA, Chiù I-M, Ravera MW, O’Brien SJ, Modi WS, Maciag T, Drohan WN (1986) Human endothehal cell growth factor: cloning, nucleotide sequence and chromosomasl localization. Science 233:541–545

    Article  PubMed  CAS  Google Scholar 

  114. Zhang G, Ichimura T, Walhn A, Kan M, Stevens JL (1991) Regulation of rat proximal tubule epithehal cell growth by fibroblast growth factors, insulin-hke growth factor-1 and transforming growth factor-ß, and analysis of fibroblast growth factors in rat kidney. J Biol Chem 148:295–305

    CAS  Google Scholar 

  115. Gautschi-Sova P, Jiang Z-P, Frater-Schroder M, Böhlen P (1987) Acidic fibroblast growth factor is present in nonneural tissue: isolation and chemical characterizadon from bovine kidney. Biochemistry 26:5844–5847

    Article  PubMed  CAS  Google Scholar 

  116. Zhang G, Stevens JL (1991) Altered growth regulation of rat proximal tubule epithelial cells transformed in vitro by SV40 viral DNA: fibroblast growth factors (heparin-binding growth factors) are potent inducers of anchorage-independent growth. Mol Carcinog 4:1–11

    Google Scholar 

  117. Michalopoulos GK, Zarnegar R (1992) Hepatocyte growth factor. Hepatology 15:149–155

    Article  PubMed  CAS  Google Scholar 

  118. Furlong RA, Takehara T, Taylor WG, Nakamura T, Rubin JS (1991) Comparison of biological and immunochemical properties indicates that scatter factor and hepatocyte growth factor are indistinguishable. J Cell Sci 100:173–177

    PubMed  CAS  Google Scholar 

  119. Igawa T, Kanda S, Kanetake H, Saitoh Y, Ichihara A, Tomito Y, Nakamura T (1991) Hepatocyte growth factor is a potent mitogen for cultured rabbit renal tubular epithehal cells. Biochem Biophys Res Commun 174:831–838

    Article  PubMed  CAS  Google Scholar 

  120. Ishibashi K, Sasaki S, Sakamoto H, Nakamura Y, Hata T, Nakamura T, Marumo F (1992) Hepatocyte growth factor is a paracrine factor for renal epithehal cells: stimulation of DNA synthesis and Na, K-ATPase activity. Biochem Biophys Res Commun 182: 960–965

    Article  PubMed  CAS  Google Scholar 

  121. Kono S, Nagaike M, Matsumoto K, Nakamura T (1992) Marked induction of hepatocyte growth factor mRNA in intact kidney and spleen in response to injury of distant organs. Biochem Biophys Res Commun 186:991–998

    Article  PubMed  CAS  Google Scholar 

  122. Nagaike M, Hirao S, Tajima H, Noji S, Taniguchi S, Matsumoto K, Nakamura T (1991) Renotrophic functions of hepatocyte growth factor in renal regeneraron after unilateral nephrectomy. J Biol Chem 266:22781–22784

    PubMed  CAS  Google Scholar 

  123. Ishibashi K, Sasaki S, Sakamoto H, Hoshino Y, Nakamura T, Marumo F (1992) Expressions of receptor gene for hepatocyte growth factor in kidney after unilateral nephrectomy and renal injury. Biochem Biophys Res Commun 187:1454–1459

    Article  PubMed  CAS  Google Scholar 

  124. Masumoto A, Yamamoto N (1991) Sequestration of a hepatocyte growth factor in extracellular matrix in normal adult rat liver. Biochem Biophys Res Commun 174:90–95

    Article  PubMed  CAS  Google Scholar 

  125. Anderson S, Renneke HG, Brenner BM (1986) Therapeutic advantage of converting enzyme inhibitors in arresting progressive renal disease associated with systemic hypertension in the rat. J Clin Invest 77:1993–2000

    Article  PubMed  CAS  Google Scholar 

  126. Powell JS, Mueller RKM, Rouge M, Kuhn H, Hefd F, Baumgartner HR (1990) The prolifeative response to vascular injury is suppressed by angiotensin-converting enzyme inhibition. J Cardiovasc Pharm 16 Suppl 4:S24-S48

    Article  Google Scholar 

  127. Xie M-H, Liu F-Y, Wong PC, Timmermans PBMWM, Cogan MG (1990) Proximal nephron and renal effects of DuP 753, a nonpeptide angiotensin II receptor antagonist. Kidney Int 38:473–479

    Article  PubMed  CAS  Google Scholar 

  128. Saccomani G, Mitchell KD, Navar LG (1990) Angiotensin II stimulation of Na+-H+ exchange in proximal tubule cells. Am J Physiol 258:F1188-F1195

    PubMed  CAS  Google Scholar 

  129. Wolf G, Nielson EG (1990) Angiotensin II induces cellular hypertrophy in cultured murine proximal tubular cells. Am J Physiol 259:F768-F777

    PubMed  CAS  Google Scholar 

  130. Robinnette JB, Conger JD (1990) Angiotensin and thromboxane in the enhanced renal adrenergic nerve sensitivity of acute renal failure. J Chn Invest 86:1532–1539

    Article  Google Scholar 

  131. Moran SM, Myers BD (1985) Pathophysiology of protracted acute renal failure in man. J Clin Invest 76:1440–1448

    Article  PubMed  CAS  Google Scholar 

  132. Mohtoris BA, Falk SA, Dahl RH (1989) Ischemia-induced loss of epithehal polarity. J Clin Invest 84:1334–1339

    Article  Google Scholar 

  133. Hynes R (1987) Integrins: a family of cell surface receptors. CeU 48:549–554

    CAS  Google Scholar 

  134. Ekblom P, Alitalo A, Vaheri R, Timpl R, Saxen L (1980) Induction of a basement membrane glycoprotein in embryonic kidney: possible role of laminin in morphogenesis. Proc Nat Acad Sci USA 77:485–489

    Article  PubMed  CAS  Google Scholar 

  135. Klein G, Laugegger R, Timpl R, Ekblom P (1988) Role of laminin A chain in the development of epithehal cell polarity. Cell 55:331–341

    Article  PubMed  CAS  Google Scholar 

  136. Ekblom P, Miettineu A, Virtanen I, Wahlstrom T, Dawnay A, Saxen L (1981) In vitro segregation of the metanephric nephron. Dev Biol 84:88–95

    Article  PubMed  CAS  Google Scholar 

  137. Bernfield M, Sanderson RD (1990) Syndecan, a developmentahy regulated cell surface proteoglycan that binds extracellular matrix and growth factors. Philos Trans R Soc Lond [Biol] 327:171–186

    Article  CAS  Google Scholar 

  138. Kellerman PS, Clark RAF, Hoilien CA, Linas SL, Mohtoris BA (1990) Role of microfilaments in maintenance of proximal tubular structural and functional integrity. Am J Physiol 259:F279-F285

    PubMed  CAS  Google Scholar 

  139. Greenhalgh DG, Sprugel KH, Murray MJ, Ross R (1990) PDGF and FGF stimulate wound heahng in the genetically diabetic mouse. Am J Pathol 136:1235–1246

    PubMed  CAS  Google Scholar 

  140. Pierce GF, Mustoe TA, Lingelbach J, Masakowski VR, Gramates P, Deuel TF (1989) Transforming growth factor beta reverses the glucocorticoid-induced wound-heahng deficit in rats: possible regulation in macrophages by platelet-derived growth factor. Proc Natl Acad Sci USA 86:2229–2233

    Article  PubMed  CAS  Google Scholar 

  141. Komatsuda A, Wakui H, Satoh K, Yasuda T, Imai H, Nakamoto Y, Miura AB, Itoh H, Tashima Y (1993) Altered localization of 73-kilodalton heat shock protein in rat kidneys with gentamicin-induced acute tubular injury. Lab Invest 68:687–695

    PubMed  CAS  Google Scholar 

  142. Arends MJ, Morris RG, Wyllie AH (1990) Apoptosis: the role of the endonuclease. Am J Pathol 136:543–608

    Google Scholar 

  143. Wyllie AH, Morris RG, Smith AL, Dunlop D (1984) Chromatin cleavage in apoptosis: association with condensed chromatin morphology and dependence on macromolecular synthesis. J Pathol 142:67–77

    Article  PubMed  CAS  Google Scholar 

  144. Bonventre JV (1993) Mechanisms of ischemic acute renal failure. Kidney Int 43: 1160–1178

    Article  PubMed  CAS  Google Scholar 

  145. Olsen S, Burdick JF, Keown PA, Wallace AC, Racusen LC, Solez K (1989) Primary acute renal failure (“acute tubular necrosis”) in the transplanted kidney: morphology and pathogenesis. Medicine (Baltimore) 68:173–187

    Article  CAS  Google Scholar 

  146. Racusen LC (1993) Tubular injury in human kidneys. Pathologic findings and pathogenic mechanisms. Clin Invest 71:858–860

    Article  CAS  Google Scholar 

  147. Pederson T, Gelfant S (1970) G2-population cells in mouse kidney and duodenum and their behavior during the cell division cycle. Exp Cell Res 59:32–36

    Article  PubMed  CAS  Google Scholar 

  148. Daniel TO, Gibbs VC, Milfay DF, Garovoy MR, Wilhams LT (1986) Thrombin stimulates c-sis gene expression in microvascular endothehal cells. J Biol Chem 261:9570–9582

    Google Scholar 

  149. Rappolee DA, Mark D, Banda MJ, Werb Z (1988) Wound macrophages express TGF- alpha and other growth factors in vivo: analysis by mRNA phenotyping. Science 241: 708–712

    Article  PubMed  CAS  Google Scholar 

  150. Siegel NJ, Gaudio KM (1988) Amino acids and adenine nucleotides in acute renal failure. In: Brenner BM, Lazarus JM (eds) Acute renal failure, 2nd edn. Churchill Livingstone, New York, pp 857–873

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lieske, J.C., Toback, F.G. (1995). Renal Epithelial Repair After Acute Tubular Necrosis. In: Bellomo, R., Ronco, C. (eds) Acute Renal Failure in the Critically Ill. Update in Intensive Care and Emergency Medicine, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79244-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79244-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79246-5

  • Online ISBN: 978-3-642-79244-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics