Skip to main content

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 20))

Abstract

Acute renal failure (ARF) has been studied in the laboratory for many years in an attempt to define its pathophysiologic mechanisms and to define possible therapies to either prevent, reverse, or ameliorate the process. Like its clinical counterpart, experimental ARF is characterized by considerable heterogeneity and model to model variation as well as a number of unifying characteristics. This chapter will review the relevant model systems and describe current thoughts on the mechanisms of vascular and tubular cell injury in experimental ARF with a particular view to highlighting clinically relevant observations. Many agents have been described which moderate injury in the experimental setting, but few have so far moved into practical usage and it is commonly observed that clinical outcomes in ARF have improved little in recent decades. Nevertheless, a number of observations from the experimental literature suggest promising avenues for clinical trials, and these will be reviewed in the final section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams PL, Adams PF, Bells PD et al. (1980) Impaired renal blood flow autoregulation in ischemic acute renal failure. Kidney Int 19:68–76

    Google Scholar 

  • Andersson G, Jennische E (1987) Lack of casual relationship between medullary blood congestion and tubular necrosis in postischaemic kidney damage. Acta Physiol Scand 130:429–432

    PubMed  CAS  Google Scholar 

  • Arendshort WJ, Finn WF, Gottschalk CW (1975) Pathogenesis of acute renal failure following renal ischemia in the rat. Circ Res 37:558

    Google Scholar 

  • AW TY, Andersson BS, Jones DP (1987a) Suppression of mitochondrial respiratory function after short-term anoxia. Am J Physiol 252:C362-C368

    PubMed  CAS  Google Scholar 

  • AW TY, Andersson BS, Jones DP (1987b) Mitochondrial transmembrane ion distribution during anoxia. Am J Physiol 252:C356-C361

    PubMed  CAS  Google Scholar 

  • Baehler RW, Kotchen TA, Ott CE (1978) Failure of chronic sodium chloride loading to protect against norepinephrine-induced acute renal failure in dogs. Circ Res 42:23–27

    PubMed  CAS  Google Scholar 

  • Bank N, Mutz BF, Aynedjian HS (1967) The role of “leakage” of tubular fluid in anuria due to mercury poisoning. J Clin Invest 46:605

    Google Scholar 

  • Basten J, Cambon N, Thompson M et al. (1987) Change in energy reserves in different segments of the nephron during brief ischemia. Kidney Int 31:1239–1247

    Google Scholar 

  • Bayati A, Hellberg O, Odlind B et al. (1987) Prevention of ischaemic acute renal failure with superoxide dismutase and sucrose. Acta Physiol Scand 130:367–372

    PubMed  CAS  Google Scholar 

  • Baylis C, Rennke HG, Brenner BM (1977) Mechanisms of the defect in glomerular ultrafiltration associated with gentamicin administration. Kidney Int 12:344

    PubMed  CAS  Google Scholar 

  • Bershadsky AD, Gelfand VI (1981) ATP-dependent regulation of cytoplasmic microtubule disassembly. Proc Natl Acad Sci USA 78:3610–3613

    PubMed  CAS  Google Scholar 

  • Bershadsky AD, Gelfand VI (1983) Role of ATP in the regulation of stabiHty of cytoskeletal structures. Cell Biol Int Rep 7:173–187

    PubMed  CAS  Google Scholar 

  • Better OS, Stein JH (1990) Early management of shock and prophylaxis of acute renal failure in traumatic rhabdomyolysis. N Engl J Med 322:825–829

    PubMed  CAS  Google Scholar 

  • Bidani AK, Churchill PC (1983) Aminophylline ameliorates glycerol-induced acute renal failure in rats. Can J Physiol Pharmacol 61:567–571

    PubMed  CAS  Google Scholar 

  • Bidani AK, Fleischmann LE, Churchill P et al. (1978) Natriuresis-induced protection in acute myohemoglobinuric renal failure without renal cortical renin content depletion in the rat. Nephron 22:529–537

    PubMed  CAS  Google Scholar 

  • Bidani AK, Churchill P, Fleischmann L (1979) Sodium-chloride-induced protection in nephrotoxic acute renal failure: idependence from renin. Kidney Int 16:481–490

    PubMed  CAS  Google Scholar 

  • Blantz RC, Pelayo JC, Gushwa LC et al. (1985) Functional basis for the glomerular alterations in uranyl nitrate acute renal failure. Kidney Int 28:733

    PubMed  CAS  Google Scholar 

  • Bonventre JV (1993) Mechanisms of ischemic acute renal failure. Kidney Int 43:1160–1178

    PubMed  CAS  Google Scholar 

  • Bonventre JV, Weinberg JM (1992) Kidney preservation ex vivo for transplantation. Annu Rev Med 43:523–553

    PubMed  CAS  Google Scholar 

  • Borkan SC, Schwartz JH (1989) Role of oxygen free radical species in in vitro models of proximal tubular ischemia. Am J Physiol 257:F114-F125

    PubMed  CAS  Google Scholar 

  • Bowmer CJ, Collis MG, Yates MS (1988) Amelioration of glycerol-induced acute renal failure in the rat with 8-phenyltheophyüine: timing of intervention. J Pharm Pharmacol 40:733–735

    PubMed  CAS  Google Scholar 

  • Brezis M, Rosen S, Silva P et al. (1984) Selective anoxic injury to thick ascending limb. An anginal syndrome of the renal medulla? Adv Exp med Biol 180:239

    PubMed  CAS  Google Scholar 

  • Brezis M, Shanley P, Silva P et al. (1985) Disparate mechanisms for hypoxic cell injury in different nephron segments: studies in the isolated perfused rat kidney. J Chn Invest 76:1796–1806

    CAS  Google Scholar 

  • Brezis M, Rosen S, Epstein FH (1991) Acute renal failure. In: Brenner BM, Rector FC (eds) The kidney. Saunders, New York, pp 993–1062

    Google Scholar 

  • Brown JJ, Gleadle RI, Lawson DH et al. (1970) Renin and acute renal failure: studies in man. Br J Med 1:253–258

    Google Scholar 

  • Brown WCB, Brown JJ, Gavras H (1972) Renin acute circulatory renal failure in the rabbit. Circ Res 30:114–122

    PubMed  CAS  Google Scholar 

  • Bulger RE, Eknoyan G, Purcell DJ et al. (1983) Endothehal characteristics of glomerular capillaries in normal, mercuric chloride-induced, and gentamicin-induced acute renal failure in the rat. J CHn Invest 72:128

    CAS  Google Scholar 

  • Burke TJ, Cronin RE, Duchin KL et al. (1980) Ischemia and tubule obstruction during acute renal failure in dogs: mannitol in protection. Am J Physiol 238:F305-F314

    PubMed  CAS  Google Scholar 

  • Burke TJ, Arnold PE, Gordon JA et al. (1984) Protective effect of intrarenal calcium membrane blockers before or after renal ischemia. J Chn Inv 74:1830–1841

    CAS  Google Scholar 

  • Burnier M, Van Putten VJ, Schieppati A et al. (1988) Effect of extracellular acidosis on Cauptake in isolated hypoxic proximal tubules. Am J Physiol 254:C839-C846

    PubMed  CAS  Google Scholar 

  • Chan L, Chittinandana A, Shapiro JI et al. (1994) Effect of an endothehn-receptor antagonist on ischemic acute renal failure. Am J Physiol 266:F135-F138

    PubMed  CAS  Google Scholar 

  • Chedru MF, Baethke R, Oken DE (1972) Renal cortical blood flow and glomerular filtration in myohemoglobinuric acute renal failure. Kidney Int 1:232

    PubMed  CAS  Google Scholar 

  • Cheung JY, Thompson IG, Bonventre JV (1982) Effects of extracellular calcium removal and anoxia on isolated rat myocytes. Am J Physiol 243:C184-C190

    PubMed  CAS  Google Scholar 

  • Cheung JY, Constantine JM, Bonventre JV (1986) Regulation of cytosolic free calcium concentration in cultured renal epithelial cells. Am J Physiol 251:F690-F701

    PubMed  CAS  Google Scholar 

  • Chien KR, Abrams J, Serroni A et al. (1978) Accelerated phospholipid degradation and associated membrane dysfunction in irreversible, ischemic liver cell injury. J Biol Chem 253:4809–4817

    PubMed  CAS  Google Scholar 

  • Chonko A, Savin V, Stewart R et al. (1979) The effects of gentamicin on renal function in the mature vs. immature rabbit. Kidney Int 16:772

    Google Scholar 

  • Conger JD, Hammond WS (1992) Renal vasculature and ischemic injury. Ren Fail 14(3):307–310

    Google Scholar 

  • Cronin RE, de Torrrente A, Miller PD et al. (1978) Pathogenic mechanisms in early norepinephrine-induced acute renal failure. Functional and histological correlates of protection. Kidney Int 14:115

    PubMed  CAS  Google Scholar 

  • Cronin RE, Brown DM, Simonsen R (1986) Protection by thyroxine in nephrotoxic acute renal failure. Am J Physiol 251:F408-F416

    PubMed  CAS  Google Scholar 

  • Cunarro JA, Schultz SE, Johnson WA et al. (1982) Effects of ischemia on metabohte concentrations in dog renal cortex. Renal Physiol 5:143–155

    PubMed  CAS  Google Scholar 

  • Cuppage FE, Cunningham N, Tate AL (1969) Nucleic acid synthesis in the regenerating nephron following injury with mercuric chloride. Lab Invest 21:449–457

    PubMed  CAS  Google Scholar 

  • Daugharty TM, Ueki IF, Mercer PF et al. (1974) Dynamics of glomerular ultrafiltration in the rat. I. Response to ischemic injury. J Clin Invest 53:105

    PubMed  CAS  Google Scholar 

  • DiBona GF, Sawin LL (1971) The renin-angiotensin system in acute renal failure in the rat. Lab Invest 25:528–532

    PubMed  CAS  Google Scholar 

  • DiBona GF, McDonald FD, Flamenbaum W et al. (1971) Maintenance of renal function in salt loaded rats despite severe tubular necrosis induced by HgCl2. Nephron 8:205–220

    PubMed  CAS  Google Scholar 

  • Diethelm AG, Wilson SJ (1971) Obstruction to the renal microcirculation after temporary ischemia. J Surg Res 11:265

    PubMed  CAS  Google Scholar 

  • Doctor RB, Mandel LJ (1991) Minimal role of xanthine oxidase and oxygen free radicals in rat renal tubular reoxygenation injury. J Am Soc Nephrol 1:959–969

    PubMed  CAS  Google Scholar 

  • Donohoe JF, Venkatachalam MA, Bernard DB et al. (1978) Tubular leakage and obstruction after renal ischemia: Structural-functional correlations. Kidney Int 13:208–222

    PubMed  CAS  Google Scholar 

  • Finn WF, Hak LJ, Grossman SH (1987) Protective effect of prostacychn on postischemic acute renal failure in the rat. Kidney Int 32:479–487

    PubMed  CAS  Google Scholar 

  • Flamenbaum W, McNeil JS, Kotchen TW et al. (1972a) Experimental acute renal failure induced by uranyl nitrate in the dog. Circ Res 31:682

    PubMed  CAS  Google Scholar 

  • Flamenbaum W, Kotchen TA, Oken DE (1972b) Effect of renin immunization on mercuric chloride and glycerol-induced renal failure. Kidney Int 1:406–412

    PubMed  CAS  Google Scholar 

  • Flamenbaum W, Kotchen TA, Nagle R et al. (1973) Effect of potassium on the renin-angiotensin system and HgCU-induced acute renal failure. Am J Physiol 224:305–311

    PubMed  CAS  Google Scholar 

  • Flamenbaum W, Hamberger RJ, Huddleston ML et al. (1976) The initiation phase of experimental acute renal failure: an evaluation of uranyl nitrate-induced acute renal failure in the rat. Kidney Int 10:S115

    Google Scholar 

  • Flamenbaum W, Schwartz JH, Hamburger RJ et al. (1977) The pathogenesis of experimental acute renal failure: the role of membrane dysfunction. Prog Mol Subcell Biol 5:73–115

    CAS  Google Scholar 

  • Flanigan WJ, Oken DE (1965) Renal micropuncture study of the development of anuria in the rat with mercury-induced acute renal failure. J Clin Invest 44:449

    PubMed  CAS  Google Scholar 

  • Flores J, DiBona DR, Beck CH et al. (1972) The role of cell swelhng in ischemic renal damage and the protective effect of hypertonic solute. J Chn Invest 51:118–126

    CAS  Google Scholar 

  • Frega NS, DiBona DR, Guertter B et al. (1976) Ischemic renal injury. Kidney Int 10:S17

    Google Scholar 

  • Gamelin LM, Zager RA (1988) Evidence against oxidant injury as a critical mediator of postischemic acute renal failure. Am J Physiol 255:F450-F460

    PubMed  CAS  Google Scholar 

  • Gaudio KM, Stromski M, Thulin G et al. (1986) Postischemic hemodynamics and recovery of renal adenosine triphosphate. Am J Physiol 251:F603-F609

    PubMed  CAS  Google Scholar 

  • Glaumann B, Trump BF (1975) Studies on the pathogenesis of ischemic cell injury. III. Morphological changes of the proximal pars recta tubules (P3) of the rat kidney made ischemic in vivo. Virchows Arch [Cell Pathol] 19:303–323

    CAS  Google Scholar 

  • Glaumann B, Glaumann H, Berezesky IK et al. (1975) Studies on the pathogenesis of ischemic cell injury. II. Morphological changes of the pars convoluta (P1 and P2) of the proximal tubule of the rat kidney made ischemic in vivo. Virchows Arch [Cell Pathol] 19:281–302

    CAS  Google Scholar 

  • Glaumann B, Glaumann H, Berezesky IK et al. (1977) Studies on cellular recovery from injury. IL Ultrastuctural studies on the recovery of the pars convoluta of the proximal tubule of the rat kidney from temporary ischemia. Virchows Arch [B] 24:1–18

    CAS  Google Scholar 

  • Glaumann G, Glaumann H, Trump BF (1977) Studies of cellular recovery from injury. III. Ultrastructural studies of the recovery of the pars recta of the proximal tubule (P3) segment of the rat kidney from temporary ischemia. Virchows Arch [B] 25:281–308

    CAS  Google Scholar 

  • Hakim RM, Wingard RL, Lawrence P (1992) Use of biocompatible membranes improves outcome and recovery from acute renal failure. J Am Soc Nephrol 3:367

    Google Scholar 

  • Halliwell B (1987) Oxidants and human disease: some new concepts. FASEB J 1:358–364

    PubMed  CAS  Google Scholar 

  • Hanley MJ, Davidson K (1981) Prior mannitol and furosemide infusion in a model of ischemic acute renal failure. Am J Physiol 24:F556-F564

    Google Scholar 

  • Heidbreder E, Schafferhans K, Heyd A et al. (1988) Uranyl nitrate-induced acute renal failure in rats: effect of atrial natriuretic peptide on renal function. Kidney Int 34 Suppl 25:S79-S82

    CAS  Google Scholar 

  • Hellberg POA, Andren T, Bayati A et al. (1985) Pathophysiological significance of rheological factors in the development of acute renal failure. Acta Physiol Scand Suppl 124:542

    Google Scholar 

  • Hellberg POA, Källskog Ö, Wolgast M (1991) Red cell trapping and postischemic renal blood flow. Differences between the cortex, outer and inner medulla. Kidney Int 40:625–631

    PubMed  Google Scholar 

  • Hollenberg NK, Wilkes BM, Schulman G (1988) The renin-angiotensin system in acute renal failure. In: Brenner BM, Lazarus JM (eds) Acute renal failure, 2nd edn. Churchill Livingstone, New York, p 19

    Google Scholar 

  • Hostetter TH, Brenner BM (1988) Renal circulatory and nephron function in experimental acute renal failure. In: Brenner BM, Lazarus JM (eds) Acute renal failure, 2nd edn. Churchill Livingstone, New York, pp 67–91

    Google Scholar 

  • Humes HD (1988) Aminoglycoside nephrotoxicity. Kidney Int 33:900–911

    PubMed  CAS  Google Scholar 

  • Humes HD, Cieshnski DA, Coimbra T et al. (1989) Epidermal growth factor enhances renal tubule cell regeneration and repair and accelerates recovery of renal function in postischemic acute renal failure. J Clin Invest 84:1757–1761

    PubMed  CAS  Google Scholar 

  • Ishikawa I, Hollenberg NK (1976) Pharmacologic interruption of the renin-angiotensin system in myohemoglobinuric acute renal failure. Kidney Int 10:S183

    Google Scholar 

  • Johnson JP, Grillo FG (1994) Thyroid hormone induction of ornithine decarboxylase in ischemic acute renal failure. Ren Fail 16(4):433–442

    CAS  Google Scholar 

  • Kashgarian M, Siegel NJ, Ries AI et al. (1976) Hemodynamic aspects in development and recovery phases of experimental post-ischemic acute renal failure. Kidney Int 10:S160

    Google Scholar 

  • Katz AM, Messineo FC (1981) Lipid-membrane interactions and the pathogenesis of ischemic damage in the myocardium. Circ Res 48:1–16

    PubMed  CAS  Google Scholar 

  • Kedar I, Jacob ET, Bar-Natan N et al. (1983) Dimethyl sulfoxide in acute ischemia of the kidney. Ann NY Acad Sci 411:131–134

    PubMed  CAS  Google Scholar 

  • Kelleher SP, Robinette JB, Miller F et al. (1987) Effects of hemorrhagic reduction in blood pressure on recovery from acute renal failure. Kidney Int 31:725–730

    PubMed  CAS  Google Scholar 

  • Kellett R, Bowmer CJ, Collis MG et al. (1988) Ameloration of glycerol-induced acute renal failure in the rat with 8-cyclopentyl-l,3-dipropylxanthine. Br J Pharmacol 98:1066–1074

    Google Scholar 

  • Kelly KJ, Williams WW, Colvin RB et al. (1993) Antibody to intracellular adhesion molecule (ICAM-1) protects the kidney against ischemia. J Am Soc Nephol 4:738

    Google Scholar 

  • Kerr JFR, Harmon BV (1991) Definition and incidence of apoptosis: an historical perspective. In: Tomei LD, Cope FO (eds) Apoptisus: the molecular basis of cell death. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 5–29

    Google Scholar 

  • Kleinman JG, Flamenbaum W, McNeil JS (1975) Uranyl nitrate acute renal failure: early changes in renal function and hemodynamics. Clin Sci Mol Med 48:9

    PubMed  CAS  Google Scholar 

  • Kon V, Badr KF (1991) Biological actions and pathophysiologic significance of endothelin in the kidney. Kidney Int 40:1–12

    PubMed  CAS  Google Scholar 

  • Kon V, Yoshioka T, Fogo A et al. (1989) Glomerular actions of endothelin in vivo. J Clin Invest 83:1762

    PubMed  CAS  Google Scholar 

  • Koyama I, Neya K, Ueda K et al. (1987) Protective effect of lipo-prostaglandin Ei on postischemic renal failure. Transplant Proc 19:3542–3544

    PubMed  CAS  Google Scholar 

  • Kurtz TW, Maletz RM, Hsu CH (1976) Renal cortical blood flow in glycerol-induced acute renal failure in the rat. Circ Res 38:30

    PubMed  CAS  Google Scholar 

  • Lefurgey A, Ingram P, Mandel LJ (1986) Heterogeneity of calcium compartmentation: electron probe analysis of renal tubules. J Membr Biol 94:191–196

    PubMed  CAS  Google Scholar 

  • Lehninger AL (1970) Mitochondria and calcium ion transport. Biochem J 119:129–138

    PubMed  CAS  Google Scholar 

  • Lieberthal W, Sheridan AM, Valeri CR (1990) Protective effect on atrial natriuretic factor and mannitol following renal ischemia. Am J Physiol 258:F1266-F1272

    PubMed  CAS  Google Scholar 

  • Lifschitz MD, Barnes JL (1984) Prostaglandin L attenuates ischemic acute renal failure in the rat. Am J Physiol 247:F714-F717

    PubMed  CAS  Google Scholar 

  • Lin JJ, Churchill PC, Bidani AK (1986) Effect of theophyline on the initiation phase of postischemic acute renal failure in rats. J Lab Clin Med 108:150–154

    CAS  Google Scholar 

  • Linas SL, Shanley PF, White CW et al. (1987) O2 metabolite-mediated injury in perfused kidneys is reflected by consumption of DMTU and glutathione. Am J Physiol 253:F692-F701

    PubMed  CAS  Google Scholar 

  • Malis CD, Bonventre JV (1986) Mechanism of calcium potentiation of oxygen free radical injury to renal mitochondria: a model for post-ischemic and toxic mitochondrial damage. JBiol Chem 261(30): 14201–14208

    CAS  Google Scholar 

  • Malis CD, Cheung JY, Leaf A et al. (1983) Effects of verapamil in models of ischemic acute renal failure in the rat. Am J Physiol 245:F735-F742

    PubMed  CAS  Google Scholar 

  • Malis CD, Weber PC, Leaf A et al. (1990) Incorporation of marine lipids into mitrochondrial membranes increases susceptibility to damage by calcium and reactive oxygen species: evidence for enhanced activation of phosphoHpase A2 in mitochondria enriched with n-3 fatty acids. Proc Natl Acad Sci USA 87:8845–8849

    PubMed  CAS  Google Scholar 

  • Mandel LJ, Bacallao R (1991) Alterations in the cytoskeleton and transepithehal resistance during ATP depletion in cultured renal epithelial cells. J Am Soc Nephrol 2:651

    Google Scholar 

  • Mandel LJ, Takano T, Soltoff SP et al. (1987) Multiple roles of calcium in anoxic-induced injury in renal proximal tubules. In: Mandel LF, Eaton DC (eds) Cell calcium and the control of membrane transport. Rockefeller University Press, New York, pp 277–285

    Google Scholar 

  • Mason J, Olbricht C, Takabatake T et al. (1977) The early phase of experimental acute renal failure. I. Intratubular pressure and obstruction. Pflugers Arch 370:155

    PubMed  CAS  Google Scholar 

  • Mason J, Torhorst J, Welsch J (1984) Role of the medullary perfusion defect in the pathogenesis of ischemic renal failure. Kidney Int 26:283–293

    PubMed  CAS  Google Scholar 

  • Mason J, Joeris B, Welsch J et al. (1989) Vascular congestion in ischemic renal failure: the role of cell swelling. Miner Electrolyte Metab 15:114–124

    PubMed  Google Scholar 

  • Mathews PG, Morgan TO, Johnston CI (1974) The renin-angiotensin system in acute renal failure in rats. Clin Sci Mol Med 47:79–88

    Google Scholar 

  • Matthys E, Patel Y, Kreisberg J et al. (1984) Lipid alterations induced by renal ischemia: pathogenic factor in membrane damage. Kidney Int 26:153–161

    PubMed  CAS  Google Scholar 

  • Mauk RH, Patak RV, Fadem SZ et al. (1977) Effect of prostaglandin E administration in a nephrotoxic and a vasoconstrictor model of acute renal failure. Kidney Int 12:122–130

    PubMed  CAS  Google Scholar 

  • McCord JM (1985) Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 312:159–163

    PubMed  CAS  Google Scholar 

  • McCoy RN, Hill KE, Ayon MA et al. (1988) Oxidant stress following renal ischemia: changes in the glutathione redox ration. Kidney Int 33:812–817

    PubMed  CAS  Google Scholar 

  • McDonald FD, Thiel G, Wilson DR et al. (1969) The prevention of acute renal failure in the rat by long term sahne loading: a possible role of the renin angiotensin axis. Proc Soc Exp Biol Med 131:610–614

    PubMed  CAS  Google Scholar 

  • Mendley SR, Toback FG (1989) Autocrine and paracrine regulation of kidney epithehal cell growth. Annu Rev Physiol 51:33–50

    PubMed  CAS  Google Scholar 

  • Mergner WJ, Smith MW, Trump BF (1977) Studies on the pathogenesis of ischemic cell injury. Virchows Arch [A] 26:17–26

    CAS  Google Scholar 

  • Mergner WJ, Chang SH, Marzella L et al. (1979) Studies on the pathogenesis of ischemic cell injury. VIII. ATPase activity of rat kidney mitochondria. Lab Invest 40: 686–694

    PubMed  CAS  Google Scholar 

  • Miller SB, Martin DR, Kissane J et al. (1992) IGF I accelerates recovery from ischemic acute tubular necrosis in the rat. Proc Natl Acad Sci USA 89:11876–11880

    PubMed  CAS  Google Scholar 

  • Miller SB, Martin DR, Kissane J et al. (1994) Hepatocyte growth factor accelerates recovery from acute ischemic renal injury in rats. Am J Physiol 266:F129-F134

    PubMed  Google Scholar 

  • Miller WL, Thomas RA, Berne RM (1978) Adenosine production in the ischemic kidney. Circ Res 43:390–397

    PubMed  CAS  Google Scholar 

  • Mohtoris BA (1991) New insights into the cell biology of ischemic acute renal failure. J Am Soc Nephrol 1:1263–1270

    Google Scholar 

  • Molitoris BA, Kinne R (1987) Ischemia induces surface membrane dysfunction. Mechanism of altered Na-dependent glucose transport. J Chn Invest 80:647–654

    CAS  Google Scholar 

  • Molitoris BA, Nelson WJ (1990) Aherations in the estabhshment and maintenance of epithelial cell polarity as a basis for disease processes. J Clin Invest 85:3–9

    PubMed  CAS  Google Scholar 

  • Mohtoris BA, Chan LK, Shapiro JI et al. (1989a) Loss of epithelial polarity: a novel hypothesis for reduced proximal tubule Na+ transport following ischemic injury. J Membr Biol 107: 119–127

    Google Scholar 

  • Mohtoris BA, Falk SA, Dahl RH (1989b) Ischemia-induced loss of epithehal polarity. Role of the tight junction. J Clin Invest 84:1334–1339

    Google Scholar 

  • Morris CR, Alexander EA, Bruns FJ et al. (1972) Restoration and maintenance of glomerular filtration by mannitol during hypoperfusion of the kidney. J Chn Invest 51:1555

    CAS  Google Scholar 

  • Nakamura H, Nemenoff RA, Gronich JH et al. (1991) Subcellular characteristics of phospholipase A2 activity in the rat kidney: enhanced cytosolic, mitochondrial, and microsomal phospholipase A2 enzymatic activity after renal ischemia and reperfusion. J Clin Invest 87:1810–1818

    PubMed  CAS  Google Scholar 

  • Needleman JV, Passonneau, Lowry OH (1968) Distribution of glucose and related metabohtes in rat kidneys. Am J Physiol 215:655–659

    PubMed  CAS  Google Scholar 

  • Neumayer HH, Wagner K, Groll J et al. (1985) Beneficial effects of long-term prostaglandin-E2 infusion on the course of postischemic acute renal failure. Renal Physiol 8:159–168

    PubMed  CAS  Google Scholar 

  • Norman J, Tsan Y, Bacay A et al. (1990) Epidermal growth factor accelerates functional recovery from ischemic acute tubular necrosis in the rat. Clin Sci 78:445–450

    PubMed  CAS  Google Scholar 

  • Ochoa E, Finkielman S, Agrest A (1970) Angiotensin blood levels during the evolution of acute renal failure. Clin Sci 38:225–231

    PubMed  CAS  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    PubMed  CAS  Google Scholar 

  • Oken DE, Cotes SC, Flamenbaum W et al. (1975) Active and passive immunization to angiotensin in experimental acute renal failure. Kidney Int 7:12–18

    PubMed  CAS  Google Scholar 

  • Olbricht C, Mason J, Takabatake T et al. (1977) The early phase of experimental acute renal failure. II. Tubular leakage and the reliabitity of glomerular markers. Pflugers Arch 373:251

    Google Scholar 

  • Oliver J, MacDowell M, Tracy A (1951) The pathogenesis of acute renal failure associated with traumatic and toxic injury: renal ischemia nephrotoxic damage and the ischemic episode. J Clin Invest 30:1305

    Google Scholar 

  • Olof P, Hellberg A, Källskog Ö et al. (1991) Red cell trapping and postischemic renal blood flow. Differences between the cortex, outer and inner medulla. Kidney Int 40:625–631

    PubMed  CAS  Google Scholar 

  • Olsen S, Burdick JF, Keown PA et al. (1989) Primary acute renal failure (“acute tubular necrosis”) in the transplanted kidney: morphology and pathogenesis. Medicine 68:173–187

    PubMed  CAS  Google Scholar 

  • Paller MS (1988) Renal work, gluthathione and susceptibility to free radical-mediated postischemic injury. Kidney Int 33:843–849

    PubMed  CAS  Google Scholar 

  • Paller MS (1992) Free radical-mediated postichemic injury in renal transplantation. Renal Failure 14:257–260

    PubMed  CAS  Google Scholar 

  • Paller MS, Hebbel RP (1986) Ethane production as a measure of lipid peroxidation after renal ischemia. Am J Physiol 251:F839-F843

    PubMed  CAS  Google Scholar 

  • Paller MS, Hedlund BE (1988) The role of iron in post-ischemic renal failure in the rat. Kidney Int 34:474–480

    PubMed  CAS  Google Scholar 

  • Paller MS, Manivel JC (1992) Prostaglandins protect kidneys against ischemic and toxic injury by a cellular effect. Kidney Int 42:1345–1354

    PubMed  CAS  Google Scholar 

  • Paller MS, Hoidal JR, Ferris TF (1984) Oxygen free radicals in ischemic acute renal failure in the rat. J Clin Invest 74:1156–1164

    PubMed  CAS  Google Scholar 

  • Portila D, Mandel LJ, Bar-Sagi D et al. (1992) Anoxia induces phospholipase A2 activation in rabbit renal proximal tubules. Am J Physiol 262:F354-F360

    Google Scholar 

  • Racusen LC (1992) Biology of disease: alterations in tubular epithelial cell adhesion and mechanisms of acute renal failure. Lab Invest 67(2): 158–165

    PubMed  CAS  Google Scholar 

  • Rahman N, Kim G, Mathews A et al. (1993) Atrial nathuretic peptide increases creatinine clearance and reduces need for dialysis in patients with established acute renal failure. J Am Soc Nephrol 4:323

    Google Scholar 

  • Reimer KA, Ganóte CE, Jennings RB (1972) Alterations in renal cortex following ischemic injury. III. Ultrastructure of proximal tubules after ischemia or autolysis. Lab Invest 26:347–363

    PubMed  CAS  Google Scholar 

  • Reineck HJ, O’Connor GJ, Lifschitz MD et al. (1980) Sequential studies on the pathophysiology and glycerol-induced acute renal failure. J Lab Clin Med 96:356

    PubMed  CAS  Google Scholar 

  • Riley AL (1978) Effect of ischemia on renal blood flow in the rat. Nephron 21:107

    PubMed  CAS  Google Scholar 

  • Rosen S, Epstein FH, Brazis M (1992) Determinants of intrarenal oxygenation: factors in acute renal failure. Ren Fail 14(3):321–325

    PubMed  CAS  Google Scholar 

  • Rossi CS, Lehninger AL (1964) Stoichiometry of respiratory stimulation, accumulation of Ca and phosphate, and oxidative phosphorylation in rat liver mitochondria. J Biol Chem 239:3971–3980

    PubMed  CAS  Google Scholar 

  • Ryan R, McNeil JS, Flamenbaum W et al. (1973) Uranyl nitrate induced acute renal failure in the rat: effect of varying doses and saline loading. Proc Soc Exp Biol Med 143:289–296

    PubMed  CAS  Google Scholar 

  • Saflrstein R, Zelent A, Price P (1989) Reduced preproEGF mRNA and diminished EGF excretion during acute renal failure. Kidney Int 36:810–815

    Google Scholar 

  • Saflrstein R, Price PM, Subodh JS et al. (1990) Changes in gene expression after temporary renal ischemia. Kidney Int 37:1515–1521

    Google Scholar 

  • Savanian A, Kin E (1985) Phospholipase A2 dependent release of fatty acids from peroxide membranes. J Free Radicals Biol Med 1:263–271

    Google Scholar 

  • Schaudies RP, Johnson JP (1993) Increased soluble EGF after ischemia is accompanied by a decrease in membrane-associated precursors. Am J Physiol 264:F523-F531

    PubMed  CAS  Google Scholar 

  • Schieppati A, Wilson PD, Burke TJ et al. (1985) Effect of renal ischemia on cortical microsomal calcium accumulation. Am J Physiol 249:C476-C483

    PubMed  CAS  Google Scholar 

  • Schrier RW, Arnold PE, Gordon JA et al. (1984) Protection of mitochondrial function by mannitol in ischemic acute renal failure. Am J Physiol 247:F365-F369

    PubMed  CAS  Google Scholar 

  • Schulman G, Fogo A, Gung A et al. (1991) Complement activation retards resolution of acute ischemic renal failure in the rat. Kidney Int 40:1069–1074

    PubMed  CAS  Google Scholar 

  • Schumer M, Colombel MC, Sawczuk IS et al. (1992) Morphologic biochemical, and molecular evidence of apoptosis during the reperfusion phase after brief periods of renal ischemia. Am J Pathol 140:831–838

    PubMed  CAS  Google Scholar 

  • Schwertschlag U, Schrier RW, Wilson P (1986) Beneficial effects of calcium channel blockers and calmoduUn binding drugs on in vitro renal cell anoxia. J Pharmacol Exp Ther 238: 119–124

    PubMed  CAS  Google Scholar 

  • Seiken G, Grillo FG, Schaudies RP et al. (1994) Epidermal growth factor in acute renal failure: interaction with thyroid hormone. Kidney Int (in press)

    Google Scholar 

  • Shah SV, Walker PD (1992) Reactive oxygen metabohtes in toxic acute renal failure. Ren Fail 14(3):363–370

    PubMed  CAS  Google Scholar 

  • Shaw SG, Weidmann P, Hodler J et al. (1987) Atrial natriuretic peptide protects against acute ischemic renal failure in the rat. J Clin Invest 80:1232–1237

    PubMed  CAS  Google Scholar 

  • Shibouta Y, Suzuki N, Shino A et al. (1990) Pathophysiological role of endothehn in acute renal failure. Life Sci 46(22):1611–1618

    PubMed  CAS  Google Scholar 

  • Siegel NJ, Glazier WB, Chaudry IH et al. (1980) Enhanced recovery from acute renal failure by the postischemic infusion of adenine nucleotides and magnesium chloride in rats. Kidney Int 17:338–349

    PubMed  CAS  Google Scholar 

  • Siegel NJ, Avison MJ, Reilly HF et al. (1983) Enhanced recovery of renal ATP with postischemic infusion of ATP-MgCl2 determined by P-NMR. Am J Physiol 245:F530-F534

    PubMed  CAS  Google Scholar 

  • Siegel NJ, Gaudio KM, Katz LA et al. (1984) Beneficial effect of thyroxin on recovery from acute renal failure. Kidney Int 25:906–911

    PubMed  CAS  Google Scholar 

  • Smith MW, Collan Y, Kating MW et al. (1980) Changes in mitochondrial lipids of rat kidney during ischemia. Biochim Biophys Acta 618:192–201

    PubMed  CAS  Google Scholar 

  • Solez K, Altman J, Rienhoff H et al. (1976) Early angiographic and renal blood flow changes after HgCL or glycerol administration. Kidney Int 10:S153

    Google Scholar 

  • Solez K, Ideura T, Saito H (1980) Role of thromboxane and outer medullary microvascular injury in post-ischemic acute renal failure. Clin Res 28:461

    Google Scholar 

  • A Solez K, Racusen LC, Whelton A (1981) Glomerular epithehal cell changes in early postischemic acute renal failure in rabbits and man. Am J Pathol 103:163

    PubMed  CAS  Google Scholar 

  • Spiegel DM, Wilson PD, Molitoris BA (1989) Epithehal polarity following ischemia: a requirement for normal cell function. Am J Physiol 256:F430-F436

    PubMed  CAS  Google Scholar 

  • Spiegel DM, Shanley PF, Mohtoris BA (1990) Mild ischemia predisposes the S3 segment to gentamicin toxicity. Kidney Int 38:459–464

    PubMed  CAS  Google Scholar 

  • Spielman WS, Osswald H (1979) Blockade of postocclusive renal vasoconstriction by an angiotensin II antagonist: evidence for an angiotensin-adenosine interaction. Am J Physiol 237(6):F463-F467

    PubMed  CAS  Google Scholar 

  • Stein JH, Sorkin MI (1976) Pathophysiology on a vasomotor and nephrotoxic model of acute renal failure in the dog. Kidney Int 10:S86

    Google Scholar 

  • Stromski ME, Cooper K, Thulin G et al. (1986) Postischemic ATP-Mg CI2 provides precursors for resynthesis of cellular ATP in rats. Am J Physiol 250:F834-F837

    PubMed  CAS  Google Scholar 

  • Stromski ME, van Waarde A, Avidon MJ et al. (1988) Metabohc and functional consequences of inhibiting adenosine deaminase during renal ischemia in rats. J Clin Invest 82:1694–1699

    PubMed  CAS  Google Scholar 

  • Summers WK, Jamison RL (1971) The no reflow phenomenon in renal ischemia. Lab Invest 25:635

    PubMed  CAS  Google Scholar 

  • Sutter PM, Thuhn G, Stromski M et al. (1988) Beneficial effect of thyroxine in the treatment of ischemic acute renal failure. Pediatr Nephrol 2:1–7

    PubMed  CAS  Google Scholar 

  • Tanner GA, Steinhausen M (1976) Tubular obstruction in ischemia-induced acute renal failure in the rat. Kidney Int 10:565

    Google Scholar 

  • Thornton MA, Winn R, Alpers CE, Zager RA (1989) An evaluation of the neutrophil as mediator of in vivo renal ischemia-reperfusion injury. Am J Pathol 135:509–515

    PubMed  CAS  Google Scholar 

  • Thurau K, Boylan JW (1976) Acute renal success: the unexpected logic of oliguria in acute renal failure. Am J Med 61:308–315

    PubMed  CAS  Google Scholar 

  • Toback FG (1992) Regeneration after acute tubular necrosis. Kidney Int 41:226–246

    PubMed  CAS  Google Scholar 

  • Toback FG, Havener FL, Dodd RC et al. (1977) Phospholipid metabolism during renal regeneration after acute tubular necrosis. Am J Physiol 232:E216-E222

    CAS  Google Scholar 

  • Uchiyama M, Mihara M (1978) Determination of malondialdehyde precursor in tissues by thiobarbituric acid test. Anal Biochem 86:271–278

    PubMed  CAS  Google Scholar 

  • Van Waarde A, Stromski ME, Thulin G et al. (1989) Protection of the kidney against ischemic injury by inhibition of 5’-nucleotidase. Am J Physiol 256:F298-F305

    PubMed  Google Scholar 

  • Vanholder RD, Praet MM, Pattyn PA et al. (1982) Dissociation of glomerular filtration and renal blood flow in HgCL-induced acute renal failure. Kidney Int 22:162

    PubMed  CAS  Google Scholar 

  • Vetterlein F, Pethö A, Schmidt G (1986) Distribution of capillary blood flow in rat kidney during postischemic renal failure. Am J Physiol 251:H510-H519

    PubMed  CAS  Google Scholar 

  • Walker PD, Shah SV (1990) Reactive oxygen matabolites in endotoxin-induced acute renal failure in rats. Kidney Int 38:1125–1132

    PubMed  CAS  Google Scholar 

  • Weinberg JM (1991) Oxygen deprivation-induced injury to isolated rabbit kidney tubules. J Clin Invest 76:1193–1208

    Google Scholar 

  • Weinberg JM (1985) The cell biology of ischemic renal injury. Kidney Int 39:476–500

    Google Scholar 

  • Weinberg JM, Humes HD (1980) Mechanisms of gentamicin-induced dysfunction of renal cortical mitochondrial respiration. Arch Biochem Biophys 205:222–231

    PubMed  CAS  Google Scholar 

  • Weinberg JM, Harding PG, Humes HD (1983) Alterations in renal cortex cation homeostasis during mercuric chloride and gentamicin nephrotoxicity. Exp Mol Pathol 39:43–60

    CAS  Google Scholar 

  • Weinberg JM, Davis JA, Abarzua M et al. (1987) Cytoprotective effects of glycine and glutathione against hypoxic injury to renal tubules. J Chn Invest 80:1446–1454

    CAS  Google Scholar 

  • Weinberg JM, Davis JA, Roeser NF et al. (1991) Role of increased cytosolic free calcium in the pathogenesis of rabbit proximal tubule cell injury and protection by glycine or acidosis. J Clin Invest 87:581–590

    PubMed  CAS  Google Scholar 

  • Wetzels JFM, Burke TJ, Schrier RW (1992) Calcium channel blockers: protective effects in ischemic acute renal failure. Ren Fail 14(3):327–332

    PubMed  CAS  Google Scholar 

  • Williams RG, Thomas CE, Navar LG et al. (1981) Hemodynamic and single nephron function during the maintenance phase of ischemic acute renal failure in the dog. Kidney Int 19:503–515

    PubMed  CAS  Google Scholar 

  • Williamson JR, Schaffer SW, Ford C et al. (1976) Contribution of tissue acidosis to ischemic injury in the perfused rat heart. Circ Res 53:13–114

    Google Scholar 

  • Wilson DR, Arnold PE, Burke TJ et al. (1984) Mitochondrial calcium accumulation and respiration in ischemic acute renal failure in the rat. Kidney Int 25:519–526

    PubMed  CAS  Google Scholar 

  • Wilson PD, Schrier RW (1986) Nephron segment and calcium as determinants of anoxic cell death in renal cultures. Kidney Int 29:1172–1179

    PubMed  CAS  Google Scholar 

  • Wolgast M, Bayati A, Hellberg O (1992) Osmotic diuretics and hemodilution in postischemic renal failure. Ren Fail 14(3):297–302

    PubMed  CAS  Google Scholar 

  • Wyllie AH, Kerr JFR, Currie AR (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68:251–306

    PubMed  CAS  Google Scholar 

  • Yagil Y, Myers BD, Jamison RL (1988) Course and pathogenesis of postischemic acute renal failure in the rat. Am J Physiol 255:F257-F264

    PubMed  CAS  Google Scholar 

  • Young EW, Humes HD (1991) Calcium and acute renal failure. Miner Electrolyte Metab 17:106–111

    PubMed  CAS  Google Scholar 

  • Zager RA (1983) Gentamicin increases renal susceptibility to an acute ischemic insult. J Lab Clin Med 101:670–678

    PubMed  CAS  Google Scholar 

  • Zager RA (1986) Escherichia coli endotoxin injections potentiate experimental ischemic renal injury. Am J Physiol 251:F988-F994

    PubMed  CAS  Google Scholar 

  • Zager RA (1988) Hypoperfusion-induced acute renal failure in the rat: an evaluation of oxidant tissue injury. Circ Res 62:430–435

    PubMed  CAS  Google Scholar 

  • Zager RA (1992) Endotoxemia, renal hypoperfusion, and fever: interactive risk factors for aminoglycoside and sepsis-associated acute renal failure. Am J Kidney Dis 20(3):223–230

    PubMed  CAS  Google Scholar 

  • Zager RA, Prior RB (1986) Gentamicin and gram negtive bacteremia: a synergism for the development of experimental nephrotoxic acute renal failure. J Clin Invest 78:196–204

    PubMed  CAS  Google Scholar 

  • Zager RA, Venkatachalam MA (1983) Potentiation of ischemic renal injury by amino acid infusion. Kidney Int 24:620–625

    PubMed  CAS  Google Scholar 

  • Zager RA, Gmur DJ, Bredl CR et al. (1991a) Temperature effects on ischemic and hypoxic renal proximal tubular injury. Lab Invest 64:766–776

    PubMed  CAS  Google Scholar 

  • Zager RA, Foerder C, Bredl C (1991b) The influence of mannitol on myoglobinuric acute renal failure: functional, biochemical, and morphological assessments. J Am Soc Nephrol 2:848–855

    Google Scholar 

  • Zager RA, Iwata M, Burkhart KM et al. (1994) Post-ischemic acute renal failure protects proximal tubules from O2 deprivation injury. Kidney Int 45:1760–1768

    PubMed  CAS  Google Scholar 

  • Zeidel ML, Brady HR, Kone BC et al. (1989) Endothelin, a peptide inhibitor of Na+/K+-ATPase in intact renal tubular epithehal cells. Am J Physiol 257:C1101–C1107

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Johnson, J.P., Rokaw, M.D. (1995). Experimental Acute Renal Failure. In: Bellomo, R., Ronco, C. (eds) Acute Renal Failure in the Critically Ill. Update in Intensive Care and Emergency Medicine, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79244-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79244-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79246-5

  • Online ISBN: 978-3-642-79244-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics