Skip to main content

Zelluläre Biologie von Erythropoietin

  • Conference paper
Elektive Chirurgie

Part of the book series: Innovative Aspekte der klinischen Medizin ((KLIN MED,volume 3))

  • 17 Accesses

Zusammenfassung

Wie viele biologische Größen wird die Neubildungsrate der roten Blutkörperchen durch einen negativen Rückkopplungsmechanismus gesteuert, der sie normalerweise in engen Grenzen konstant hält oder an Veränderungen des Bedarfs anpaßt (Abb. 1). Schlüsselelement in diesem Regelkreis ist das Hormon Erythropoietin (EPO) [10, 19, 27]. EPO stimuliert die Bildung von Erythrozyten im Knochenmark. Seine Konzentration hängt ab vom peripheren Sauerstoffangebot, das seinerseits im wesentlichen durch die Zahl der zirkulierenden roten Blutzellen und deren Hämoglobingehalt bestimmt wird. Darüber hinaus beeinflussen die pulmonale Sauerstoffsättigung des Hämoglobins und seine Sauerstoffbindungsfähigkeit sowie die Hämodynamik das Sauerstoffangebot an die Gewebe. Bei einer Reduktion der Sauerstoffversorgung kommt es unabhängig von der Ursache zu einem Anstieg der EPO-Konzentration im Blutplasma und damit in der Regel zu einer Steigerung der Erythropoiese, während ein inadäquat erhöhtes Sauerstoffangebot die EPO-Spiegel und in der Folge die Erythropoiese supprimiert.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Aukland K, Krog J (1960) Renal oxygen tension. Nature 188: 671

    Article  PubMed  CAS  Google Scholar 

  2. Bachmann S, Le Hir M, Eckardt K-U (1993) Colocalization of erythropoietin mRNA and ecto-5 -nucleotidase immunoreactivity in peritubular cells of rat renal cortex indicates that fibroblasts produce erythropoietin. J Histochem Cytochem 41: 335–341

    Article  PubMed  CAS  Google Scholar 

  3. Baumgärtl H, Leichtweiss HP, Liibbers DW et al. (1972) The oxygen supply of the dog kidney: measurements of intrarenal p02. Mirovasc Res 4: 247–257

    Article  Google Scholar 

  4. Cotes PM, Doré CJ, Liu Yin JA et al. (1986) Determination of serum immunoreactive erythropoietin in the investigation of erythrocytosis. N Engl J Med 315: 283–287

    Article  PubMed  CAS  Google Scholar 

  5. Eckardt K-U, Kurtz A, Bauer C (1989) Regulation of erythropoietin formation is related to proximal tubular function. Am J Physiol 256: F942 - F947

    PubMed  CAS  Google Scholar 

  6. Eckardt K-U, Dittmer J, Neumann R et al. (1990) Decline of erythropoietin formation at continuous hypoxia is not due to feedback inhibition. Am J Physiol 258: F1432 - F1437

    PubMed  CAS  Google Scholar 

  7. Eckardt K-U, Koury ST, Tan CC et al. (1992) Distribution of erythropoietin producing cells in rat kidneys during hypoxic hypoxia. Kidney Int 43: 815–823

    Article  Google Scholar 

  8. Eckardt K-U, Ratcliffe PJ, Tan CC et al. (1992) Age dependent expression of the erythropoietin gene in rat liver and kidneys. J Clin Invest 89: 753–760

    Article  PubMed  CAS  Google Scholar 

  9. Eckardt K-U, Pugh CW, Ratcliffe PJ, Kurtz A (1993) Oxygen dependent modulation of erythropoietin mRNA in rat hepatocytes in vitro. Pfluegers Arch 423: 356–364

    Article  CAS  Google Scholar 

  10. Erslev M (1991) Erythropoietin. N Engl J Med 324: 1339–1344

    Article  CAS  Google Scholar 

  11. Eschbach JW (1989) The anemia of chronic renal failure: pathophysiology and the effects of recombinant erythropoietin. Kidney Int 35: 134–148

    Article  PubMed  CAS  Google Scholar 

  12. Fraser JK, Tan AS, Lin F-K, Berridge MV (1989) Expression of specific high-affinity binding sites for erythropoietin on rat and mouse megakaryocytes. Exp Hematol 17: 10–16

    PubMed  CAS  Google Scholar 

  13. Gilles-Gonzales MA, Ditta GS, Helinski DR (1991) A haemoprotein with kinase activity encoded by the oxygen sensor of Rhizobium meliloti. Nature 350: 170–172

    Article  Google Scholar 

  14. Goldberg MA, Glass GA, Cunningham JM, Bunn HF (1987) The regulated expression of erythropoietin by two human hepatoma cell lines. Proc Natl Acad Sci USA 84: 7972–7976

    Article  PubMed  CAS  Google Scholar 

  15. Goldberg MA, Dunning SP, Bunn HF (1988) Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein. Science 242: 1412–1415

    Article  PubMed  CAS  Google Scholar 

  16. Goldberg MA, Gaut CC, Bunn HF (1991) Erythropoietin mRNA levels are governed by both the rate of gene transcription and posttranscriptional events. Blood 77: 271–277

    PubMed  CAS  Google Scholar 

  17. Jacobs K, Shoemaker C, Rudersdorf R et al. (1985) Isolation and characterization of genomic and cDNA clones of human erythropoietin. Nature 313: 806–810

    Article  PubMed  CAS  Google Scholar 

  18. Jelkmann W (1982) Temporal pattern of erythropoietin titers in kidney tissue during hypoxic hypoxia. Pfluegers Arch 393: 88–91

    Article  CAS  Google Scholar 

  19. Jelkmann W (1992) Erythropoietin: Structure, control of production, and function. Physiol Rev 72: 449–489

    PubMed  CAS  Google Scholar 

  20. Jones SS, D’Andrea AD, Haines LL, Wong GG (1990) Human erythropoietin receptor: cloning, expression, and biologic characterization. Blood 76: 31–35

    PubMed  CAS  Google Scholar 

  21. Kaissling B, Spiess S, Rinne B, Le Hir M (1993) Effects of anemia on morphology of rat renal cortex. Am J Physiol 264: F608 - F617

    PubMed  CAS  Google Scholar 

  22. Koury MJ, Bondurant MC (1990) Control of red cell production: the roles of programmed cell death (apoptosis) and erythropoietin. Transfusion 30: 673–674

    Article  PubMed  CAS  Google Scholar 

  23. Koury MJ, Bondurant MC (1990) Erythropoietin retards DNA breakdown and prevents programmed death in erythroid progenitor cells. Science 248: 378–381

    Article  PubMed  CAS  Google Scholar 

  24. Koury MJ, Bondurant MC, Graber SE, Sawyer ST (1988) Erythropoietin messenger RNA levels in developing mice and transfer of 125I-erythropoietin by the placenta. J Clin Invest 82: 154–159

    Article  PubMed  CAS  Google Scholar 

  25. Koury ST, Koury MJ, Bondurant MC et al. (1989) Quantitation of erythropoietin-producing cells in kidneys of mice by in situ hybridization: correlation with hematocrit, renal erythropoietin mRNA, and serum erythropoietin concentration. Blood 74: 645–651

    PubMed  CAS  Google Scholar 

  26. Koury ST, Bondurant MC, Koury MJ, Semenza GL (1991) Localization of cells producing erythropoietin in murine liver by in situ hybridization. Blood 77: 2497–2503

    PubMed  CAS  Google Scholar 

  27. Krantz SB (1991) Erythropoietin. Blood 77: 419–434

    CAS  Google Scholar 

  28. Lemley KV, Kriz W (1991). Anatomy of the renal interstitium. Kidney Int 39: 370–382

    Article  PubMed  CAS  Google Scholar 

  29. Lin F-K, Suggs S, Lin C-H et al. (1985) Cloning and expression of the human erythropoietin gene. Proc Natl Acad Sci USA 82: 7580–7584

    Article  PubMed  CAS  Google Scholar 

  30. Lorentz A, Jendrissek A, Eckardt K-U et al. (1991) Serial immunoreactive erythropoietin in autologous blood donors. Transfusion 31: 650–654

    Article  PubMed  CAS  Google Scholar 

  31. Maxwell PH, Osmond MK, Pugh CW et al. (1993) Identification of the renal erythropoietin-producing cells using transgenic mice. Kidney Int 44: 1149–1162

    Article  PubMed  CAS  Google Scholar 

  32. Miller ME, Cronkite EP, Garcia JF (1982) Plasma levels of immunoreactive erythropoietin after acute blood loss in man. Br J Haematol 52: 545–549

    Article  PubMed  CAS  Google Scholar 

  33. Ratcliffe PJ (1993) Molecular biology of erythropoietin. (Nephrology Forum) Kidney Int 44: 887–904

    CAS  Google Scholar 

  34. Sasaki H, Bothner B, Dell A, Fukuda M (1987) Carbohydrate structure of erythropoietin expressed in chinese hamster ovary cells by a human erythropoietin cDNA. J Biol Chem 262: 12059–12076

    PubMed  CAS  Google Scholar 

  35. Schooley JC, Mahlmann LJ (1972) Evidence for the de novo synthesis of erythropoietin in hypoxic rats. Blood 40: 662–671

    PubMed  CAS  Google Scholar 

  36. Schurek HJ, Jost U, Baumgärtl H et al. (1990) Evidence for a preglomerular oxygen diffusion shunt in rat renal cortex. Am J Physiol 259: F910 - F915

    PubMed  CAS  Google Scholar 

  37. Schuster SJ, Wilson JH, Erslev AJ, Caro J (1987) Physiologic regulation and tissue localization of renal erythropoietin messenger RNA. Blood 70: 316–318

    PubMed  CAS  Google Scholar 

  38. Schuster SJ, Badiavas EV, Costa-Giorni P et al. (1989) Stimulation of erythropoietin gene transcription during hypoxia and cobalt exposure. Blood 73: 13–16

    PubMed  CAS  Google Scholar 

  39. Schuster SJ, Koury ST, Bohrer M et al. (1992) Cellular sites of extrarenal and renal erythropoietin production in anemic rats. Br J Haematol 81: 153–159

    Article  PubMed  CAS  Google Scholar 

  40. Smith Dordal M, Wang FF, Goldwasser E (1985) The role of carbohydrate in erythropoietin action. Endocrinology 116: 2293–2299

    Article  Google Scholar 

  41. Spivak JL, Cotes PM (1991) The pharmacokinetics and metabolism of erythropoietin. In: Erslev AJ, Adamson JW, Eschbach JW, Winearls CG (eds) Erythropoietin–molecular, cellular, and clinical biology. The Johns Hopkins University Press, Baltimore, London, pp 162–183

    Google Scholar 

  42. Takeuchi M, Takasaki S, Miyazaki H et al. (1988) Comparative study of the asparagine-linked sugar chains of human erythropoietins purified from urine and the culture medium of recombinant chinese hamster ovary cells. J Biol Chem 263: 3657–3663

    PubMed  CAS  Google Scholar 

  43. Tan CC, Eckardt K-U, Ratcliffe PJ (1991) Organ distribution of erythropoietin messenger RNA in normal and uremic rats. Kidney Int 40: 69–76

    Article  PubMed  CAS  Google Scholar 

  44. Tan CC, Eckardt K-U, Firth J, Ratcliffe PJ (1992) Feedback modulation of renal and hepatic erythropoietin messenger RNA in response to graded anemia and hypoxia. Am J Physiol 263: F474 - F481

    PubMed  CAS  Google Scholar 

  45. Winkelmann JC, Penny LA, Deaven LL, Forget BG, Jenkins RB (1990) The gene for the human erythropoietin receptor: analysis of the coding sequence and assignment to chromosome 19p. Blood 76: 24–30

    PubMed  CAS  Google Scholar 

  46. Zanjani ED, Ascensao JL, McGlave PB, Banisadre M, Ash RC (1981) Studies on the liver to kidney switch of erythropoietin production. J Clin Invest 76: 1183–1188

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eckardt, KU. (1994). Zelluläre Biologie von Erythropoietin. In: van Ackern, K., Mempel, W., Schlag, P., Scigalla, P. (eds) Elektive Chirurgie. Innovative Aspekte der klinischen Medizin, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79238-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79238-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58388-2

  • Online ISBN: 978-3-642-79238-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics