Nanometer-Scale Local Hydrization of the Si(111)-(7×7) Surface Using an STM Tip

  • H. Kuramochi
  • H. Uchida
  • M. Aono
Conference paper
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 31)


The Si(111)-7×7 surface can be locally hydrized at the nanometer scale by depositing H atoms from an STM tip. The H atoms are supplied to a Pt tip through dissociative adsorption of gaseous H2 and are deposited onto the Si(111)-7×7 surface by field evaporation. The deposition of H atoms occurs for the Pt tip but not for Au, Ag and W tips because H2 is not adsorbed on the Au and Ag tips and an insulating hydride layer is formed on the W tip. By continuously depositing H atoms from the Pt tip with the tip being scanned, we can draw any nanometer-scale patterns on the surface.


Scanning Tunneling Microscope Tunneling Current Scanning Tunneling Microscope Image Natural Defect Dissociative Adsorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Phys. Rev. Lett. 49, 57 (1982).CrossRefGoogle Scholar
  2. 2.
    R. S. Becker, J.A. Golovchenko, and B.S. Swartzentruber, Nature 325, 419 (1987).CrossRefGoogle Scholar
  3. 3.
    D. M. Eigler and E.K. Schweizer, Nature 344, 524 (1990);CrossRefGoogle Scholar
  4. 3a.
    D.M. Eigler, C.P. Lutz, and W.E. Rudge, Nature 352, 600 (1991);CrossRefGoogle Scholar
  5. 3b.
    I.W. Lyo and P. Avouris, Science 253, 173 (1991);CrossRefGoogle Scholar
  6. 3c.
    H. Uchida, D.H. Huang, J. Yoshinobu, and M. Aono, Surf. Sci. 287/288, 105 (1993);CrossRefGoogle Scholar
  7. 3d.
    S. Hosoki, S. Hosaka, and T. Hasegawa, Appl. Surf. Sci. 60/61, 2418 (1993).Google Scholar
  8. 4.
    K. Christmann, G. Ertl, and T. Pignet, Surf. Sci. 54, 365 (1976);CrossRefGoogle Scholar
  9. 4a.
    F.P. Netzer and G. Kneringer, Surf. Sci. 51, 526 (1975);CrossRefGoogle Scholar
  10. 4b.
    S. Ferrer and H.P. Bonzel, Surf. Sci. 119, 234 (1982);CrossRefGoogle Scholar
  11. 4c.
    B. Lang, R.W. Joyner, and G.A. Somorjai, Surf. Sci. 30, 454 (1972).CrossRefGoogle Scholar
  12. 5.
    Muller and T.T. Tsong, Field Ion Microscopy, Principles and Applications (Elsevier, New York, 1969), p.49.Google Scholar
  13. 6.
    H. Kuramochi, H. Uchida, and M. Aono, Phys. Rev. Lett. 72, 932 (1994).CrossRefGoogle Scholar
  14. 7.
    .J. Boland, Surf. Sci. 244, 1 (1991).CrossRefGoogle Scholar
  15. 8.
    T. Sakurai, Y. Hasegawa, T. Hashizume, I. Kamiya, T. Ide, and I. Sumita, J. Vac. Sci. Technol. A8, 259 (1990).Google Scholar
  16. 9.
    S.H. Wolff, S. Wagner, D. Lorctto, and J.M. Gibson, Mat. Res. Soc. Symp. Proc. 138, 575 (1989).CrossRefGoogle Scholar
  17. 10.
    For example, T. Sakurai and H.D. Hugstrum, Phys. Rev. B12, 5349 (1975).Google Scholar
  18. 11.
    A. Kobayashi, F. Grey, R.S. Williams, and M. Aono, Science 259, 1724 (1993);CrossRefGoogle Scholar
  19. 11a.
    M. Aono, A. Kobayashi, F. Grey, H. Uchida, and D.H. Huang, Jpn. J. Appl. Phys. 32, 1470 (1993);CrossRefGoogle Scholar
  20. 11b.
    D.H. Huang, H. Uchida, and M. Aono, Jpn. J. Appl. Phys. 31, 4501 (1992).CrossRefGoogle Scholar
  21. 12.
    G.A. Attard and D.A. King, Surf. Sci. 223, 1 (1989).CrossRefGoogle Scholar
  22. 13.
    M. Sawamura, M. Tsukada, and M. Aono, Jpn. J. Appl. Phys. 32, 3257 (1993).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • H. Kuramochi
    • 1
  • H. Uchida
    • 1
  • M. Aono
    • 1
    • 2
  1. 1.Aono Atomcraft Project, ERATOJRDCTsukuba-shi, IbarakiJapan
  2. 2.The Institute of Physical and Chemical Research (RIKEN)Wako-shi, Saitama 351Japan

Personalised recommendations