Electron and Ion Microscopy Without Lenses

  • H.-W. Fink
  • H. Schmid
Conference paper
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 31)


A point source for electrons and ions has been employed to devise new high-resolution microscopy schemes. The key to this novel tool is an atomic-sized electron source that directly provides a beam of coherent electrons with low kinetic energy. Thus, in contrast to classical electron microscopy, lenses and their intrinsic aberrations become obsolete. We describe the properties of this electron and ion source as well as its applications, ranging from Gabor-type electron holography to ion projection microscopy to the mechanical and electronic manipulation of nanometer-sized objects.


Carbon Fiber Double Slit Experiment Electron Holography Coherent Electron Inline Holography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Tonomura, this issue. See also H. Lichte, Ultramicroscopy 20, 293 (1986), A. Tonomura, Phys. Today 43, No. 4, 22 (1990). For a recent brief but excellent review of electron holography, see: Tom Mulvey, European Microscopy and Analysis, 31 (January 1994)CrossRefGoogle Scholar
  2. 2.
    H.-W. Fink, Physica Scripta 38, 260 (1988)CrossRefGoogle Scholar
  3. 3.
    M. Ohtsuki, and E. Zeitler, Ultramicroscopy 2, 147 (1977)CrossRefGoogle Scholar
  4. 4.
    G. Moellenstedt and H. Dueker, Z. Physik 145, 377 (1956)CrossRefGoogle Scholar
  5. 5.
    H. Schmid, and H.-W. Fink, Appl. Surf. Sci. 67, 436 (1993)CrossRefGoogle Scholar
  6. 6.
    E. W. Mueller, Z. Physik 131, 136 (1951)CrossRefGoogle Scholar
  7. 7.
    S. Horch, and R. Morin, J. Appl. Phys. 74 (6), 3652 (1993)CrossRefGoogle Scholar
  8. 8.
    W. Qian, M. R. Scheinfein, and J. C. H. Spence, J. Appl. Phys. 73, 7041 (1993)CrossRefGoogle Scholar
  9. 9.
    H. U. Mueller, B. Voelkel, M. Hofmann, Ch. Woell, and M. Grunze, Ultramicroscopy 50, 57 (1993)CrossRefGoogle Scholar
  10. 10.
    R. Morin, and H.-W. Fink, submitted to J. Appl. Phys.Google Scholar
  11. 11.
    N. D. Lang, A. Yacoby, and Y. Imry, Phys. Rev. Lett. 63, 1499 (1989)CrossRefGoogle Scholar
  12. 12.
    E. Tekman, S. Ciraci, and A. Baratoff, Phys. Rev. В 42, 9221 (1990)CrossRefGoogle Scholar
  13. 13.
    D. Gabor, Nature (London) 161, 777 (1948)CrossRefGoogle Scholar
  14. 14.
    M. E. Haine and T. Mulvey, J. Opt. Soc. Am. 42, 763 (1952)CrossRefGoogle Scholar
  15. 15.
    G. A. Morton, and E. G. Ramberg, Phys. Rev. 56 (1939)Google Scholar
  16. 16.
    A. Melmed, Appl. Phys. Letters 12, 100 (1968)CrossRefGoogle Scholar
  17. 17.
    W. Stocker, H.-W. Fink, and R. Morin, Ultramicroscopy 31, 379 (1989)CrossRefGoogle Scholar
  18. 18.
    H.-W. Fink, W. Stocker, and H. Schmid, Phys. Rev. Lett. 65, 1204 (1990)CrossRefGoogle Scholar
  19. 19.
    H.-W. Fink, H. Schmid, H. J. Kreuzer, and A. Wierzbicki, Phys. Rev. Lett. 67, 1543 (1991)CrossRefGoogle Scholar
  20. 20.
    G. Binnig, and H. Rohrer, Helv. Phys. Acta 55, 726 (1982)Google Scholar
  21. 21.
    J. C. H. Spence, W. Qian, and A. J. Melmed, Ultramicroscopy, in pressGoogle Scholar
  22. 22.
    R. Morin, and A. Gargani, Phys. Rev. В 48 (9), 6643 (1993)CrossRefGoogle Scholar
  23. 23.
    A. Degiovanni, and R. Morin, submitted to Phys. Rev. Lett.Google Scholar
  24. 24.
    H. J. Kreuzer, K. Nakamura, A. Wierzbicki, H.-W. Fink, and H. Schmid, Ultramicroscopy 45, 381 (1992)CrossRefGoogle Scholar
  25. 25.
    H. Schmid, and H.-W. Fink, Nanotechnology, in pressGoogle Scholar
  26. 26.
    R. Landauer, IBM J. Res. Develop. 32 (3), 303 (1988)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • H.-W. Fink
    • 1
  • H. Schmid
    • 1
  1. 1.IBM Research DivisionZurich Research LaboratoryRüschlikonSwitzerland

Personalised recommendations