Skip to main content

Whole Body and Organ Measures of O2 Availability

  • Chapter
Clinical Trials for the Treatment of Sepsis

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 19))

  • 83 Accesses

Abstract

It is generally accepted that maintaining an “adequate” (or “optimal”) level of oxygen delivery is an important therapeutic goal in the management of patients with sepsis or septic shock. There is much controversy, however, about the proper way to define and monitor the adequacy of oxygen delivery (DO2) in sepsis. This controversy reflects our poor understanding — despite more that thirty years of intensive research — of the effects of sepsis on cellular oxygen utilization (VO2) and energy metabolism. Indeed, the very notion that organ dysfunction in sepsis occurs as a result of cellular energy starvation remains an attractive, but poorly substantiated, hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergstrom J, Bostrom H, Fürst P, Hultman E, Vinnars E (1976) Preliminary studies of energy-rich phosphagens in muscle from severely ill patients. Crit Care Med 4: 197–204

    Article  PubMed  CAS  Google Scholar 

  2. Vary TC, Siegel JH, Nakatani T, Sato T, Aoyama H (1986) Effect of sepsis on activity of pyruvate dehydrogenase complex in skeletal muscle and liver. Am J Physiol 250: E634–E640

    PubMed  CAS  Google Scholar 

  3. Astiz M, Rackow EC, Weil MH, Schumer W (1988) Early impairment of oxidative metabolism and energy production in severe sepsis. Circ Shock 26: 311–320

    PubMed  CAS  Google Scholar 

  4. Pelias ME, Townsend MC (1992) In vivo [31P]NMR assessment of early hepatocellular dysfunction during endotoxemia. J Surg Res 52: 505–509

    Article  PubMed  CAS  Google Scholar 

  5. Burns AH, Giaimo ME, Summer WR (1986) Dichloroacetic acid improves in vitro myocardial function following in vivo endotoxin administration. J Crit Care 1: 11–17

    Article  CAS  Google Scholar 

  6. Mori E, Hasebe M, Kobayashi K, Lijima N (1987) Alterations in metabolite levels in carbohydrate and energy metabolism of rat in hemorrhagic shock and sepsis. Metabolism 36: 14–20

    Article  PubMed  CAS  Google Scholar 

  7. Pedersen P, Saljo A, Hasseigren PO (1987) Protein and energy metabolism in liver tissue following intravenous infusion of live E. coli bacteria in rats. Circ Shock 21: 59–64

    PubMed  CAS  Google Scholar 

  8. Hotchkiss RS, Song SK, Neil JJ, et al (1991) Sepsis does not impair tricarboxylic cycle in the heart. Am J Physiol 260: C50–C57

    PubMed  CAS  Google Scholar 

  9. McDonough KH, Henry JJ, Lang CH, Spitzer JJ (1986) Substrate utilization and high energy phosphate levels of hearts from hyperdynamic septic rats. Circ Shock 18: 161–170

    PubMed  CAS  Google Scholar 

  10. Laughlin MH, Smyk-Randall EM, Novotny MJ, Brown OR, Adams HR (1988) Coronary blood flow and cardiac adenine nucleotides in E. coli endotoxemia in dogs: Effects of oxygen radical scavengers. Circ Shock 25: 173–185

    PubMed  CAS  Google Scholar 

  11. Pasque MK, Murphy CE, Van Trigt P, Pellom GL, Currie WD, Wechsler AS (1983) Myocardial adenosine triphosphate levels during early sepsis. Arch Surg 118: 1437–1440

    PubMed  CAS  Google Scholar 

  12. Hotchkiss RS, Rust RS, Song SK, Ackerman JJH (1993) Effect of sepsis on brain energy metabolism in normoxic and hypoxic rats. Circ Shock 40: 303–310

    PubMed  CAS  Google Scholar 

  13. Jepson MM, Cox M, Bates PC, et al (1987) Regional blood flow and skeletal muscle energy status in endotoxemic rats. Am J Physiol 252: E581–E587

    PubMed  CAS  Google Scholar 

  14. Song SK, Hotchkiss RS, Karl IE, Ackerman JJH (1992) Concurrent quantification of tissue metabolism and blood flow via 2H/31P NMR in vivo, III: Alterations in muscle blood flow and metabolism during sepsis. Magn Reson Med 25: 67–77

    Article  PubMed  CAS  Google Scholar 

  15. Jacobs DO, Kobayashi T, Imagire J, Grant C, Kesselly B, Wilmore DW (1991) Sepsis alters skeletal muscle energetics and membrane function. Surgery 110: 318–326

    PubMed  CAS  Google Scholar 

  16. Zager RA (1991) Adenine nucleotide changes in kidney, liver, and small intestine during different forms of ischemic injury. Circ Res 68: 185–196

    PubMed  CAS  Google Scholar 

  17. Haybron DM, Townsend MC, Hampton WW, Schirmer WJ, Schirmer JM, Fry DE (1987) Alterations in renal perfusion and renal energy charge in murine peritonitis. Arch Surg 122: 328–331

    PubMed  CAS  Google Scholar 

  18. Chaudry IH, Wichterman KA, Baue AE (1979) Effect of sepsis on tissue adenine nucleotide levels. Surgery 85: 205–211

    PubMed  CAS  Google Scholar 

  19. Shimahara Y, Kono Y, Tanaka J, et al (1987) Pathophysiology of acute renal failure following living Escherichia coli injection in rats: High-energy metabolism and renal functions. Circ Shock 21: 197–205

    PubMed  CAS  Google Scholar 

  20. Hampton WA, Townsend MC, Haybron DM, Shirmer WJ, Fry DE (1987) Effective hepatic blood flow and hepatic bioenergy status in murine peritonitis. J Surg Res 42: 33–38

    Article  PubMed  CAS  Google Scholar 

  21. Blair E (1971) Acid-base balance in bacteremic shock. Arch Intern Med 127: 731–739

    Article  PubMed  CAS  Google Scholar 

  22. Groeneveld ABJ, Kester ADM, Nauta JJP, Thijs LG (1987) Relation of arterial blood lactate to oxygen delivery and hemodynamic variables in human shock states. Circ Shock 22: 35–53

    PubMed  CAS  Google Scholar 

  23. Kruse JA, Haupt MT, Puri VK, Carlson RW (1990) Lactate levels as predictors of the relationship between oxygen delivery and consumption in ARDS. Chest 98: 959–962

    Article  PubMed  CAS  Google Scholar 

  24. Haupt MT, Gilbert EM, Carlson RW (1985) Fluid loading increases oxygen consumption in septic patients with lactic acidosis. Am Rev Respir Dis 131: 912–916

    PubMed  CAS  Google Scholar 

  25. Nelson DP, Beyer C, Samsel RW, Wood LDH, Schumacker PT (1987) Pathological supply dependence of 02 uptake during bacteremia in dogs. J Appl Physiol 63: 1487–1492

    PubMed  CAS  Google Scholar 

  26. Hurtado FJ, Gutierrez AM, Silva N, Fernandez E, Khan AE, Gutierrez G (1992) Role of tissue hypoxia as the mechanism of lactic acidosis during E. coli endotoxemia. J Appl Physiol 72: 1895–1901

    CAS  Google Scholar 

  27. Fink MP, Kaups KL, Wang H, Rothschild HR (1991) Maintenance of superior mesenteric arterial perfusion prevents increased intestinal mucosal permeability in endotoxic pigs. Surgery 110: 154–161

    PubMed  CAS  Google Scholar 

  28. Rudinsky BF, Meadow WL (1992) Relationship between oxygen delivery and metabolic acidosis during sepsis in piglets. Crit Care Med 20: 831–839

    Article  PubMed  CAS  Google Scholar 

  29. Curtis SE, Cain SM (1992) Regional and systemic oxygen delivery/uptake relations and lactate flux in hyperdynamic, endotoxin-treated dogs. Am Rev Respir Dis 145: 348–354

    PubMed  CAS  Google Scholar 

  30. Vary TC, Siegel JH, Tall BD, Morris JG (1988) Metabolic effects of partial reversal of pyruvate dehydrogenase activity by dichloroacetate in sepsis. Circ Shock 24: 3–18

    PubMed  CAS  Google Scholar 

  31. Hotchkiss RS, Karl IE (1992) Réévaluation of the role of cellular hypoxia and bioen- ergetic failure in sepsis. J Am Med Assoc 267: 1503–1509

    Article  CAS  Google Scholar 

  32. Lang CH, Bagby GJ, Dobrescu C, Ottlakan A, Spitzer JJ (1992) Sepsis- and endotoxin- induced increase in organ glucose uptake in leukocyte-depleted rats. Am J Physiol 263: R1324–R1332

    PubMed  CAS  Google Scholar 

  33. Lang CH, Obih JCA, Bagby GJ, Bagwell JN, Spitzer JJ (1991) Increased glucose uptake by intestinal mucosa and muscularis in hypermetabolic sepsis. Am J Physiol 261: G287–G294

    PubMed  CAS  Google Scholar 

  34. Windeil CC, Baldwin SA, Davies A, Martin S, Pasternak CA (1990) Cellular stress induces a redistribution of the glucose transporter. FASEB J 4: 1634–1637

    Google Scholar 

  35. Zeller WP., The SM, Sweet M et al (1991) Altered glucose transporter mRNA abundance in a rat model of endotoxic shock. Biochem Biophys Res Commun 176: 535–540

    Article  PubMed  CAS  Google Scholar 

  36. Gores GJ, Nieminen AL, Wray BE, Herman B, Lemasters JJ (1989) Intracellular pH during “chemical hypoxia” in cultured rat hepatocytes: Protection by intracellular acidosis against the onset of cell death. J Clin Invest 83: 386–396

    Article  PubMed  CAS  Google Scholar 

  37. Mommsen TP, Hochachka PW (1983) Protons and anaerobiasis. Science 219: 1391–1397

    Article  PubMed  Google Scholar 

  38. Mecher C, Rackow EC, Astiz ME, Weil MH (1991) Unaccounted for anion in metabolic acidosis during severe sepsis in humans. Crit Care Med 19: 705–711

    Article  PubMed  CAS  Google Scholar 

  39. Rackow EC, Mecher C, Astiz ME, Goldstein C, McKee D, Weil MH (1990) Unmeasured anion during severe sepsis with metabolic acidosis. Circ Shock 30: 107–115

    PubMed  CAS  Google Scholar 

  40. Hochachka PW (1987) Metabolic suppression and oxygen availability. Can J Zool 66: 152–158

    Article  Google Scholar 

  41. Gutierrez G, Pohil RJ, Strong R (1989) Skeletal muscle oxygen consumption and energy metabolism during hypoxemia. J Appl Physiol 66: 2117–2123

    PubMed  CAS  Google Scholar 

  42. Duran WN, Renkin EM (1974) Oxygen consumption and blood flow in resting mammalian skeletal muscle. Am J Physiol 226: 173–177

    PubMed  CAS  Google Scholar 

  43. Whalen DF, Buerk D, Thuning CA (1973) Blood flow-limited oxygen consumption in resting cat skeletal muscle. Am J Physiol 224: 763–768

    PubMed  CAS  Google Scholar 

  44. Edelstone DI, Paulone ME, Holzman IR (1984) Hepatic oxygenation during arterial hypoxemia in neonatal lambs. Am J Obstet Gynecol 150: 513–518

    PubMed  CAS  Google Scholar 

  45. Cain SM (1975) Oxygen delivery and utilization in dogs with a sublethal dose of cobalt chloride. J Appl Physiol 38: 20–25

    PubMed  CAS  Google Scholar 

  46. Cain SM (1977) Oxygen delivery and uptake in dogs during anemic and hypoxic hypoxia. J Appl Physiol 42: 228–234

    PubMed  CAS  Google Scholar 

  47. Adams RP, Dieleman LA, Cain SM (1982) A critical value for 02 transport in the rat. J Appl Physiol 53: 660–664

    PubMed  CAS  Google Scholar 

  48. Cilley RE, Polley TZ Jr, Zwischenberger JB, Toomasian JM, Bartlett RH (1989) Independent measurement of oxygen consumption and oxygen delivery. J Surg Res 472: 242–247

    Article  Google Scholar 

  49. Shibutani K, Komatsu T, Kubal K, Sanchala V, Kuman V, Bizzari D (1983) Critical level of oxygen delivery in anesthetized man. Crit Care Med 11: 640–643

    Article  PubMed  CAS  Google Scholar 

  50. Komatsu T, Shibutani K, Okamoto K, et al (1987) Critical level of oxygen delivery after cardiopulmonary bypass. Crit Care Med 15: 194–197

    Article  PubMed  CAS  Google Scholar 

  51. Ronco JJ, Fenwick JC, Tweeddale MG, et al (1993) Identification of the critical oxygen delivery for anaerobic metabolism in critically ill septic and nonseptic humans. J Am Med Assoc 270: 1724–1730

    Article  CAS  Google Scholar 

  52. Rhodes GR, Newell JC, Shah D, et al (1978) Increased oxygen consumption accompanying increased oxygen delivery with hypertonic mannitol in adult respiratory distress syndrome. Surgery 84: 490–497

    PubMed  CAS  Google Scholar 

  53. Danek SJ, Lynch JP, Weg JG, Dantzker DR (1980) The dependence of oxygen uptake on oxygen delivery in the adult respiratory distress syndrome. Am Rev Respir Dis 122: 387–395

    PubMed  CAS  Google Scholar 

  54. Mohsenifar Z, Goldbach P, Tashkin DP, Campisi DJ (1983) Relationship between 02 delivery and 02 consumption in the adult respiratory distress syndrome. Chest 84: 267–271

    Article  PubMed  CAS  Google Scholar 

  55. Clarke C, Edwards JD, Nightingale P, Mortimer AJ, Morris J (1991) Persistence of supply dependency of oxygen uptake at high levels of delivery in adult respiratory distress syndrome. Crit Care Med 19: 497–502

    Article  PubMed  CAS  Google Scholar 

  56. Lorente JA, Renes E, Gomez-Aguinaga MA, Landin L, de la Morena JL, Liste D (1991) Oxygen delivery-dependent oxygen consumption in acute respiratory failure. Crit Care Med 19: 770–775

    Article  PubMed  CAS  Google Scholar 

  57. Wolf YG, Cotev S, Perel A, Manny J (1987) Dependence of oxygen consumption on cardiac output in sepsis. Crit Care Med 15: 198–203

    Article  PubMed  CAS  Google Scholar 

  58. Cain SM (1984) Supply dependency of oxygen uptake in ARDS: Myth or reality? Am J Med Sci 288: 119–124

    Article  PubMed  CAS  Google Scholar 

  59. Nelson DP, Samsel RW, Wood LDH, Schumacker PT (1988) Pathological supply dependence of systemic and intestinal 02 uptake during endotoxemia. J Appl Physiol 64: 2410–2419

    PubMed  CAS  Google Scholar 

  60. Samsel RW, Nelson DP, Sanders WM, Wood LDH, Schumacker PT (1988) Effect of endotoxin on systemic and skeletal muscle 02 extraction. J Appl Physiol 65: 1377–1382

    PubMed  CAS  Google Scholar 

  61. Bihari D, Smithies M, Gimson A, Tinker J (1987) The effects of vasodilation with pros-tacyclin on oxygen delivery and uptake in critically ill patients. N Engl J Med 317: 397–403

    Article  PubMed  CAS  Google Scholar 

  62. Fenwick JC, Dodek PM, Ronco JJ, Phang PT, Wiggs BR, Russell JA (1990) Increased concentrations of plasma lactate predict pathologic dependence of oxygen consumption on oxygen delivery in patients with adult respiratory distress syndrome. J Crit Care 5: 81–86

    Article  Google Scholar 

  63. Vincent JL, Roman A, De Backer D, Kahn RJ (1990) Oxygen uptake/supply dependency. Effects of short-term dobutamine infusion. Am Rev Respir Dis 142: 2–7

    PubMed  CAS  Google Scholar 

  64. Ronco JJ, Fenwick JC, Wiggs BR, Phang PT, Russell JA, Tweedale MG (1993) Oxygen consumption is independent of increases in oxygen delivery by dobutamine in septic patients who have normal or increased plasma lactate. Am Rev Respir Dis 147: 25–31

    Article  PubMed  CAS  Google Scholar 

  65. Ronco JJ, Phang PT, Walley KR, Wiggs B, Fenwick JC, Russell JA (1991) Oxygen consumption is independent of changes in oxygen delivery in severe adult respiratory distress syndrome. Am Rev Respir Dis 143: 1267–1273

    PubMed  CAS  Google Scholar 

  66. Vermeij CG, Feenstra BWA, Adrichem WJ, Bruining HA (1991) Independent oxygen uptake and oxygen delivery in septic and postoperative patients. Chest 99: 1438–1443

    Article  PubMed  CAS  Google Scholar 

  67. Carlile PV, Gray BA (1989) Effect of opposite changes in cardiac output and arterial P02 on the relationship between mixed venous P02 and oxygen transport. Am Rev Respir Dis 140: 891–898

    PubMed  CAS  Google Scholar 

  68. Vermeij CG, Feenstra BWA, Bruining HA (1990) Oxygen delivery and oxygen uptake in postoperative and septic patients. Chest 98: 415–420

    Article  PubMed  CAS  Google Scholar 

  69. Dietrich KA, Conrad SA, Hebert CA, Levy GL, Romero MD (1990) Cardiovascular and metabolic response to red blood cell transfusion in critically ill volume-resuscitated nonsurgical patients. Crit Care Med 18: 940–944

    Article  PubMed  CAS  Google Scholar 

  70. Mink RB, Pollack MM (1990) Effect of blood transfusion on oxygen consumption in pediatric septic shock. Crit Care Med 18: 1087–1091

    Article  PubMed  CAS  Google Scholar 

  71. Heard SO, Baum TD, Wang H, Rothschild HR, Fink MP (1991) Systemic and mesenteric 02 metabolism in endotoxic pigs: Effect of graded hemorrhage. Circ Shock 35: 44–52

    PubMed  CAS  Google Scholar 

  72. Greer GG, Milazzo FH (1975) Pseudomonas aeruginosa lipopolysaccharide: An uncouple of mitochondrial oxidative phosphorylation. Can J Microbiol 21: 877–883

    Article  PubMed  CAS  Google Scholar 

  73. Mela L, Bacalco LV Jr, Miller LD (1971) Defective oxidative metabolism of rat liver mitochondria in hemorrhagic and endotoxin shock. Am J Physiol 220: 571–577

    PubMed  CAS  Google Scholar 

  74. Decker GAG, Daniel AM, Blevings S, Maclean LD (1971) Effect of peritonitis on mitochondrial respiration. J Surg Res 11: 528–532

    Article  PubMed  CAS  Google Scholar 

  75. Tanaka J, Kono Y, Shimahara Y, et al (1982) A study of oxidative phosphorylative activity and calcium-induced respiration of rat liver mitochondria following living Escherichia coli injection. Adv Shock Res 7: 77–90

    PubMed  CAS  Google Scholar 

  76. Clemens M, Chaudry IH, Baue AE (1981) Oxidative capability of hepatic tissue in late sepsis. Adv Shock Res 6: 55–64

    PubMed  CAS  Google Scholar 

  77. Spitzer JA, Deaciuc IV (1986) Effect of endotoxicosis and sepsis on intracellular calcium homeostasis in rat liver. Mitochondrial and microsomal calcium uptake. Circ Shock 18: 81–93

    PubMed  CAS  Google Scholar 

  78. Stadler J, Billiar TR, Curran RD, Stuehr DJ, Ochoa JB, Simmons RL (1991) Effect of exogenous and endogenous nitric oxide on mitochondrial respiration rat hepatocytes. J Appl Physiol 260: C910–C916

    CAS  Google Scholar 

  79. Stadler J, Bentz BG, Harbrecht BG, et al (1992) Tumor necrosis factor alpha inhibits hepatocyte mitochondrial respiration. Ann Surg 216: 539–546

    Article  PubMed  CAS  Google Scholar 

  80. Fink MP, Antonsson JB, Wang H, Rothschild HR (1991) Increased intestinal permeability in endotoxic pigs: Mesenteric hypoperfusion as an etiologic factor. Arch Surg 126: 211–218

    PubMed  CAS  Google Scholar 

  81. Tuchschmidt J, Fried J, Astiz M, Rackow E (1992) Elevation of cardiac output and oxygen improves outcome in septic shock. Chest 102: 216–220

    Article  PubMed  CAS  Google Scholar 

  82. Yu M, Levy MH, Smith P, Takiguchi SA, Miyasaki A, Myers SA (1993) Effect of maximizing oxygen delivery on morbidity and mortality rates in critically ill patients: A prospective, randomized, controlled study. Crit Care Med 21: 830–838

    Article  PubMed  CAS  Google Scholar 

  83. Dantker DR (1993) The gastrointestinal tract: The canary of the body? J Am Med Assoc 270: 1247–1248

    Article  Google Scholar 

  84. Bergofsky EH (1964) Determination of tissue 02 tensions by hollow visceral tonometers: Effect of breathing enriched 02 mixtures. J Clin Invest 43: 193–200

    Article  PubMed  CAS  Google Scholar 

  85. Dawson AM, Trenchard D, Guz A (1965) Small bowel tonometry: Assessment of small gut mucosal oxygen tension in dog and man. Nature 206: 943–944

    Article  PubMed  CAS  Google Scholar 

  86. Antonsson JB, Boyle CC, Kruithoff KL, et al (1990) Validation of tonometric measurement of gut intramural pH during endotoxemia and mesenteric occlusion in pigs. Am J Physiol 259: G519–G523

    PubMed  CAS  Google Scholar 

  87. Fink MP, Cohn SM, Lee PC, et al (1989) Effect of lipopolysaccharide on intestinal intramucosal hydrogen ion concentration in pigs: Evidence of gut ischemia in a normo- dynamic model of septic shock. Crit Care Med 17: 641–646

    Article  PubMed  CAS  Google Scholar 

  88. Antonsson JB, Kuttila K, Niinikoski J, Haglund UH (1993) Subcutaneous and gut tissue perfusion and oxygenation changes as related to oxygen transport in experimental peritonitis. Circ Shock 41: 261–267

    PubMed  CAS  Google Scholar 

  89. Fink MP, Cohn SM, Lee PC, et al (1989) Effect of lipopolysaccharide on intestinal intramucosal hydrogen ion concentration in pigs: Evidence of gut ischemia in a normo- dynamic model of septic shock. Crit Care Med 17: 641–646

    Article  PubMed  CAS  Google Scholar 

  90. Salzman AL, Wang H, Wollert PS, et al (1994) Endotoxin-induced ileal mucosal hyper- permeability in pigs: Role of tissue acidosis. Am J Physiol (in press)

    Google Scholar 

  91. Whitworth PW, Cryer HM, Garrison RN, Baumgarten TE, Harris PD (1989) Hypoper-fusion of the intestinal microcirculation with increased cardiac output during live Es-cherichia coli sepsis in rats. Circ Shock 27: 111–122

    PubMed  CAS  Google Scholar 

  92. Johnson BA, Weil MH (1991) Refefining ischemia due to circulatory failure as dual defects of oxygen deficits and carbon dioxide excesses. Crit Care Med 19: 1432–1438

    Article  PubMed  CAS  Google Scholar 

  93. Maynard N, Bihari D, Beale R, et al (1993) Assessment of splanchnic oxygenation by gastric tonometry in patients with acute circulatory failure. J Am Med Assoc 270: 1203–1210

    Article  CAS  Google Scholar 

  94. Gys T, Hubens A, Neels H, Lauwers LF, Peeters R (1988) Prognostic value of gastric intramural pH in surgical intensive care patients. Crit Care Med 16: 122–124

    Article  Google Scholar 

  95. Doglio GR, Pusajo JF, Egurrola MA, et al (1991) Gastric mucosal pH as a prognostic index of mortality in critically ill patients. Crit Care Med 19: 1037–1040

    Article  PubMed  CAS  Google Scholar 

  96. Gutierrez G, Palizas F, Doglio G, et al (1992) Gastric intramucosal pH as a therapeutic index of tissue oxygenation in critically ill patients. Lancet 339: 195–199

    Article  PubMed  CAS  Google Scholar 

  97. Salzman AL, Strong KE, Wang H, Wollert PS, Van der Meer T, Fink MP (1994) Intra-luminal “baloonless” air tonometry: A new method for determination of gastrointestinal mucosal PC02. Crit Care Med 22: 126–134

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fink, M.P. (1995). Whole Body and Organ Measures of O2 Availability. In: Vincent, JL., Sibbald, W.J. (eds) Clinical Trials for the Treatment of Sepsis. Update in Intensive Care and Emergency Medicine, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79224-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79224-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79226-7

  • Online ISBN: 978-3-642-79224-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics