Skip to main content

SPECT versus PET

  • Chapter
  • 27 Accesses

Zusammenfassung

Die Single-Photon-Emissions-Computertomographie (SPECT) und die Positronenemissionstomographie (PET) sind Verfahren, die zur dreidimensionalen Darstellung von Radioaktivitätsverteilungen im Körper eingesetzt werden. Sie unterscheiden sich wesentlich in der Art der Strahlendetektorsysteme und in den zur Anwendung geeigneten Radioisotopen und Radiopharmaka. Dieses Kapitel gibt eine Übersicht über die historische Entwicklung, die physikalisch-technischen Unterschiede und vergleicht die klinischen und wissenschaftlichen Einsatzmöglichkieten der beiden Verfahren. Es wird verdeutlicht, warum die Anzahl der PET-Standorte trotz ihrer methodischen Vorteile nur langsam zunimmt, während die SPECT sich zu dem nuklearmedizinischen Standardverfahren entwickelt hat.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   64.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Kühl DE, Edwards RQ (1963) Image separation radioisotope scanning. Radiology 80:653–662

    Google Scholar 

  2. Hounsfield GN (1973) Computerized transverse axial scanning (tomography) Part I: Description of system. Br J Radiol 46:1016

    Article  PubMed  CAS  Google Scholar 

  3. Kühl DE, Edwards RQ (1964) Cylindrical and section isotope scanning of the liver and the brain. Radiology 83:926

    PubMed  Google Scholar 

  4. Kühl DE, Edwards RQ (1970) The mark III scanner: a compact device for multiple-view and section scanning of the brain. Radiology 96:563–570

    PubMed  Google Scholar 

  5. Kühl DE (1976) The Mark IV system for radionuclide computed tomography of the brain. Radiology 121:405–413

    PubMed  Google Scholar 

  6. Cormack AM (1963) Representation of a function by its line integrals, with some radiological applications. J Appl Physiol 34:2722–2727

    Article  Google Scholar 

  7. Keyes JW, Kay DB, Lees DEB, Simon W, Walters TE (1974) Applied comparison of methods for radionuclide transverse section tomography. In: Proc 1st World Congress Nuclear Medicine: 1281- 3. World Federation of Nuclear Medicine and Biology, Tokyo, Japan

    Google Scholar 

  8. Budinger TF, Derenzo SE, Gullberg GT (1977) Emission computer assisted tomography with single- photon and positron annihilation photon emitters. J Comput Assist Tomogr 1:131–145

    Article  PubMed  CAS  Google Scholar 

  9. Rankowitz S, Robertson JS, Higinbotham WA, Niell AM (1962) Positron scanner for locating brain tumors. IRE Int Conv Ree 9:49–56

    Google Scholar 

  10. Robertson JS, Neil AM (1962) Use of a digital computer in the development of a positron scanning procedure. In: Proc 4th IBM Medical Symposium, pp 77–103

    Google Scholar 

  11. Anger HO (1973) Multiple plane tomographic scanner. In: Freedman GS (ed) Tomographic imaging in nuclear medicine. Society of Nuclear Medicine, New York, pp 2–18

    Google Scholar 

  12. Muehllehner G, Wetzel RA (1971) Section imaging by computer calculation. J Nucl Med 12:79–87

    Google Scholar 

  13. Todd-Pokropek AE (1972) The formation and display of section scans. In: Proceedings of the Symposium of the American Congress of Radiology, 1971. Excerpta Medica, Amsterdam, pp 545- 556

    Google Scholar 

  14. Bowley AR, Taylor CG, Causer DA et al. (1973) A radioisotope scanner for rectilinear, arc, tranverse section and longitudinal section scanning (ASS-The Aberdeen Section Scanner). Br J Radiol 46:262–271

    Article  PubMed  CAS  Google Scholar 

  15. Tanaka E (1973) Multi-crystal section imaging device and its data processing. In: Proceedings of the 13th Congress of Radiology, Madrid. Excerpta Medica, Amsterdam, pp 81–85

    Google Scholar 

  16. Burham CA, Brownell GL (1972) A multi-crystal positron camera. IEEE Trans Nucl Sei NS-19:201- 205

    Article  Google Scholar 

  17. Ter-Pogossian MM, Phelps ME, Hoffman EJ, Mullani NA (1975) A Positron-Emission Transaxial Tomograph for nuclear medicine imaging (PETT). Radiology 114:89–98

    PubMed  CAS  Google Scholar 

  18. Phelps ME, Hoffman EJ, Mullani NA, Ter-Pogossian MM (1975) Application of annihilation coincidence detection to transaxial reconstruction tomography. J Nucl Med 16:210–233

    PubMed  CAS  Google Scholar 

  19. Hoffmann EJ, Phelps ME, Mullani NA et al. (1976) Design and performance characteristics of a whole-body positron transaxial tomograph. J Nucl Med 17:493–502

    PubMed  CAS  Google Scholar 

  20. Ido T, Wan CN, Fowler JS et al. (1977) Fluorination with F2. A convenient synthesis of 2-deoxy-2- fluoro-D-glucose. J Org Chem 42:2341–2342

    Article  CAS  Google Scholar 

  21. Reivich M, Kühl DE, Wolf A et al. (1979) The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 44:127–137

    PubMed  CAS  Google Scholar 

  22. Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kühl DE (1979) Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-deoxy-D-glucose: Validation of method. Ann Neurol 6:371–388

    Article  PubMed  CAS  Google Scholar 

  23. Radon J (1917) Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Sächsische Gesellschaft Wissenschaft Leipzig Math Phys 69:262–277

    Google Scholar 

  24. Jones T, Chesler DA, Ter-Pogossian MM (1976) The continuous inhalation of 150 for assessing regional oxygen extraction in the brain of man. Br J Radiol 49:339–343

    Article  PubMed  CAS  Google Scholar 

  25. Frackowiak RS J, Lenzi G-L, Jones T, Heather D (1980) Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 150 and positron emission tomography: theory, procedure, and normal values. J Comput Assist Tomogr 4:727–736

    Article  PubMed  CAS  Google Scholar 

  26. Huang S-C, Carson RE, Phelps ME (1982) Measurement of local blood flow and distribution volume with short-lived isotopes: a general input technique. J Cereb Blood Flow Metabol 2:99–108

    Article  CAS  Google Scholar 

  27. Huang S-C, Phelps ME, Hoffman EJ, Sideris K, Selin CE, Kühl DE (1980) Non invasive determination of local cerebral metabolic rate of glucose in man. Am J Physiol 238:E69-E82

    PubMed  CAS  Google Scholar 

  28. Feinendegen LE, Herzog, H, Wieler H, Patton DD, Schmid A (1986) Glucose transport and utilization in the human brain: Model using carbon-11 methyl-glucose and positron emission tomography. J Nucl Med 27:1867–1877

    PubMed  CAS  Google Scholar 

  29. Hübner KF, Purvis JT, Mahaley SN Jr et al. (1982) Brain tumour imaging by positron emission computed tomography using 1 C-labelled amino acids. J Comput Assist Tomogr 6:544–550

    Article  PubMed  Google Scholar 

  30. Bergström M, Collins VP, Ehrin E et al. (1983) Discrepancies in brain tumor extent as shown by computed tomography and positron tomography using 68Ga-EDTA, [UC]-glucose and UC- methionine. J Comput Assist Tomogr 7:1062–1066

    Article  PubMed  Google Scholar 

  31. Derlon JM, Bourdet C, Bustany P, Chatel M, Theron J, Darcel F, Syrota AS (1989) [uC]L-methionine uptake in gliomas. Neurosurg 25:720–728

    Article  Google Scholar 

  32. Comar D, Maziere M, Gadot JM, Berger G, Sousalline F (1979) Visualization of uC-flunitracepam displacement in the brain of the life baboon. Nature 280:329–331

    Article  PubMed  CAS  Google Scholar 

  33. Firnau G, Chirakol R, Sood F, Garnett ES (1981) Radiofluorination with Xenon difluoride of L-6- (18F) fluoro-DOPA. J Label Compds Radiopharm 18:7

    Google Scholar 

  34. Wagner HN Jr, Burns HD, Dannais RS et al. (1983) Imaging dopamine receptors in the human brain by positron tomography. Science 22:1264–1266

    Article  Google Scholar 

  35. Huang S-C, Barrio JR, Phelps (1986) Neuroreceptor assay with positron emission tomography: equilibrium versus dynamic approaches. J Cereb Blood Flow Metabol 6:515–521

    Article  CAS  Google Scholar 

  36. Wong DS, Gjedde H, Wagner HN Jr (1986) Quantification of neuroreceptors in the living human brain. I. Reversible binding of ligands. J Cereb Blood Flow Metabol 6:137–146

    Article  CAS  Google Scholar 

  37. Tyler JL, Yamamoto YL, Diksic M, Theron J, Villemure JG, Worthington C, Evans AC, Feindel W (1986) Pharmacokinetics of superselective intraarterial and intravenous [nC]BCNU evaluated by PET. J Nucl Med 27:775–780

    PubMed  CAS  Google Scholar 

  38. Ginos JZ, Dhawan V, Cooper AJL, Strother SC, Halcock N, Rottenberg DA (1987) Intra-arterial versus intravenous cisplatin for treatment of malignant brain tumours: Assessment of the pharmacologic advantage of intra-arterial chemotherapy using 13N-Cisplatin/PET. J Cereb Blood Flow Metabol 6[Suppl 1]:464

    Google Scholar 

  39. Harper PV, Beck R, Charleston D, Lathrop KA (1964) Optimization of a scanning method using 99mTc. Nucleonics 22:50–54

    CAS  Google Scholar 

  40. Winchell HS, Baldwin RM, Lin TH (1980) Development of 1–123 labeled amines for brain studies: Localization of 123I iodophenylalcylamines in rat brain. J Nucl Med 21:940–946

    PubMed  CAS  Google Scholar 

  41. Novotnik DP, Canning LE, Cumming SA et al. (1985) Development of a 99mTc-labelled radiopharmaceutical for cerebral blood flow imaging. Nucl Med Commun 6:499–506

    Article  Google Scholar 

  42. Walovitch RC, Hill TC, Garrity ST (1989) Characterization of Technetium-99m-L-ECD for brain perfusion imaging. Part I: Pharmacology of Technetium-99m-ECD in non human primates. J Nucl Med 30:1892–1901

    PubMed  CAS  Google Scholar 

  43. Kung HF, Alavi A, Kung MP et al. (1989) I-123-IBZM: A new CNS D2 receptor agent: Biodistribution and dosimetry in humans. J Nucl Med 30:834 (Abstract)

    Google Scholar 

  44. Holl K, Deisenhammer E, Dauth J, Carmann H, Schubiger PA (1989) Imaging benzodiazepine receptors in the human brain by Single Photon Emission Computed Tomography (SPECT). Nucl Med Biol 16(8):757–763

    Google Scholar 

  45. Zielinski JE, Larner JM, Hoffer PB, Hochberg RB (1989) The synthesis of llß-metoxy-[16a- 123I]iodoestradiol and its interaction with the estrogen receptor in vivo and in vitro. J Nucl Med 30:209–215

    PubMed  CAS  Google Scholar 

  46. Lamberts SWJ, Bakker WH, Reubi J-C, Krenning EP (1990) Somatostatin-receptor imaging in the localization of endocrine tumours. N Engl J Med 323:1246–1249

    Article  PubMed  CAS  Google Scholar 

  47. Tisljar U, Kloster G, Ritzl F, Stöcklin G (1979) Accumulation of radioiodinated L-a-methyltyrosine in pancreas of mice: concise communication. J Nucl Med 20:973–976

    PubMed  CAS  Google Scholar 

  48. Langen K-J, Herzog H, Kuwert T et al. (1988) Tomographic Studies of rCBF with [99mTc]-HM-PAO SPECT in patients with brain tumors: Comparison with C1502 continous inhalation technique and PET. J Cereb Blood Flow Metab 8:S90-S94

    Article  PubMed  CAS  Google Scholar 

  49. Langen K-J, Coenen HH, Roosen N et al. (1990) SPECT studies of brain tumors L-3-[123I]Iodo-a- methyl tyrosine (123IMT): first clinical results and comparison with PET and 124IMT. J Nucl Med 31:281–286

    PubMed  CAS  Google Scholar 

  50. Langen K-J, Roosen N, Coenen HH et al. (1991) Brain and brain tumor uptake L-3-[123I]Iodo-a- methyl tyrosine (123IMT): competition with natural amino acids. J Nucl Med 32:1225–1228

    PubMed  CAS  Google Scholar 

  51. Langen K-J, Ziemons K, Kiwit JCW (1994) Comparison of 1–123-a-methyltyrosine SPECT and C- 11-L-methiofiine PET in patients with brain tumors. J Nucl Med 35:8P

    Google Scholar 

  52. Müller-Gärtner H-W, Wilson AA, Dannais RF, Wagner HN Jr, Frost JJ (1992) Imaging muscarinic cholinergic receptors in human brain in vivo with SPECT [123I]4-iododexetimide and [123I]4- iodolevetimide. J Cereb Blood Flow Metab 12:562–570

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Langen, KJ., Herzog, H. (1995). SPECT versus PET. In: Wieler, H.J. (eds) Single-Photon-Emissions-Computertomographie (SPECT) des Gehirns. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79222-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79222-9_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79223-6

  • Online ISBN: 978-3-642-79222-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics