Advertisement

SPECT-Darstellung der Benzodiazepinrezeptoren

  • P. Bartenstein

Zusammenfassung

Das erste Benzodiazepin, Chlordiazepoxid, wurde 1957 von Leo H. Sternbach entdeckt [1]. Die 1960 in die Therapie eingeführte Substanzklasse hat neben ihrer sedativ-hypnotischen, anxiolytischen, amnestischen und muskelrelaxierenden Wirkung auch einen starken antikonvulsiven Effekt [2, 3]. Die Entdeckung spezifischer Bindungsstellen mit hoher Affinität für Benzodiazepine am GABA- Rezeptorkomplex im Jahre 1977 durch Möhler und Okada [4] sowie Squires und Braestrup [5] ermöglichte eine plausible Erklärung der Wirkungsweise der Benzodiazepine auf molekularer Ebene. Die beiden Arbeitsgruppen konnten zeigen, daß eine enge Korrelation besteht zwischen der pharmakologischen Wirksamkeit verschiedener Benzodiazepine und ihrer Potenz, 3H-Diazepam von diesem Benzodiazepinrezeptor des zentralen Typs zu verdrängen. Braestrup und Squires [6] konnten auch eine spezifische Bindung von 3H-Diazepam in verschiedenen peripheren Geweben wie Niere, Leber und Lunge nachweisen. Diese sog. Benzodiazepinrezeptoren des peripheren Typs weisen eine andere pharmakologische Spezifität auf als die zentralen Benzodiazepinrezeptoren.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Goodman Gilman A, Goodman LS, Rail TW, Murad F (eds) The pharmacological basis of therapeutics. Macmillan, New York (1985)Google Scholar
  2. 2.
    Kretz FJ, Löscher W, Peisdersky B, Kraft A, Eyrich K (1990) Flumazenil (Anexate): Pharmakodynamik, Pharmakokinetik, Indikationen und Kontraindikationen. Med Klin 85:156- 162Google Scholar
  3. 3.
    Sadzot B, Frost JJ (1990) Benzodiazepine receptors. In: Frost JJ, Wagner HN Jr (eds) Quantitative imaging. Neuroreceptors, neurotransmitters and enzymes. Raven, New York, pp 109–127Google Scholar
  4. 4.
    Möhler H, Okada T (1977) Benzodiazepine receptors - demonstration in the central nervous system. Science 198:849–851PubMedCrossRefGoogle Scholar
  5. 5.
    Squires R, Braestrup C (1977) Benzodiazepine receptors in rat brain. Nature 266:732PubMedCrossRefGoogle Scholar
  6. 6.
    Braestrup C, Squires R (1977) Specific benzodiazepine receptors in rat brain characterized by high affinity 3H-diazepam binding. Proc Natl Acad Sei USA 74:3804–3809CrossRefGoogle Scholar
  7. 7.
    Schoemaker H, Bliss M, Yamamura HI (1981) Specific high-affinity saturable binding of 3H-Ro 5–4864 to benzodiazepine binding sites in the rat cerebral cortex. Eur J Pharmacol 71:173–175PubMedCrossRefGoogle Scholar
  8. 8.
    Bartenstein P, Schober O (1991) In-vivo-Darstellung von Benzodiazepin-Rezeptoren des zentralen Types. Wien Klin Wochenschr 103:647–648Google Scholar
  9. 9.
    Olsen RW, Tobin AJ (1990) Molecular biology of GABAÄ-receptors. FASEB J 4:1469–1480PubMedGoogle Scholar
  10. 10.
    Bowery N (1989) GABAb receptors and their significance in mammalian pharmacology. Trends Pharmacol Sei 10:401–407CrossRefGoogle Scholar
  11. 11.
    Enna SJ (1983) The GABA-receptors. The Human Press, Clifton, New JerseyGoogle Scholar
  12. 12.
    DeLorey TM, Olsen RW (1992) y-Aminobutyric acid-A receptor structure and function. J Biol Chem 267:16747–16750Google Scholar
  13. 13.
    Paul SM, Marangos PJ, Skolnick P (1981) The benzodiazepine-GABA-chloride ionophore receptor komplex. Common site for minor tranquilizer action. Biological Psych 16:213–229Google Scholar
  14. 14.
    Doble A, Martin IL (1992) Multiple benzodiazepine receptors: no reason for anxiety. Trends Pharmacol Sei 13:76–81CrossRefGoogle Scholar
  15. 15.
    Pritchett DB, Sontheimer H, Shivers BD et al. (1989) Importance of a novel GABAa receptor subunit for benzodiazepine pharmacology. Nature 338:582–585PubMedCrossRefGoogle Scholar
  16. 16.
    Lüddens H, Wisden W (1991) Function and pharmacology of multiple GABAa receptor subunits. Trends Pharmacol Sei 12:49–51CrossRefGoogle Scholar
  17. 17.
    Sieghardt W (1989) Multiplicity of GABAa-benzodiazepine receptors. Trends Pharmacol Sei 10:407–411CrossRefGoogle Scholar
  18. 18.
    Pritchett DB, Seeburg PH (1991) y-Aminobutyric acid typ A receptor point mutation increases the affinity of compounds for the benzodiazepine site. Proc Natl Acad Sei (USA) 88:1421–1425CrossRefGoogle Scholar
  19. 19.
    Lüddens H, Killisch I, Seeburg PH (1991) More than one alpha variant may exist in a GABAA/ benzodiazepine receptor complex. J Recept Res 11:535–551PubMedGoogle Scholar
  20. 20.
    Costa E (1983) Benzodiazepines - from molecular biology to clinical practice. Raven, New YorkGoogle Scholar
  21. 21.
    Olsen RW, Sapp DM, Bureau MH, Turner DM, Kokka N (1991) Allosteric actions of central nervous system depressants including anesthetics on subtypes of the inhibitory y-Aminobutyric acid A receptor-chloride channel complex. Ann NY Acad Sei 625:145–154CrossRefGoogle Scholar
  22. 22.
    Ninan PT, Insel TM, Cohen RM, Cook JM, Skolnick P, Paul SM (1982) Benzodiazepine receptor- mediated experimental anxiety in primates. Science 218:1332–1334PubMedCrossRefGoogle Scholar
  23. 23.
    Oakley NR, Jones BJ (1980) The proconvulsant and diazepam-reversing effects of ethyl-ß- carboline-3-carboxylate. Eur J Pharmacol 68:381–382PubMedCrossRefGoogle Scholar
  24. 24.
    Prado de Carvalho L, Grecksch G, Chapouthier G, Rossier J (1983) Anxiogenic and non anxiogenic benzodiazepine antagonists. Nature 301:64–66CrossRefGoogle Scholar
  25. 25.
    Nutt DJ, Cowen PJ, Little HJ (1982) Unusual interactions of benzodiazepine receptor antagonists. Nature 295:436–438PubMedCrossRefGoogle Scholar
  26. 26.
    Corda MG, Feyrari M, Guidotti A, Konkel D, Costa E (1984) Isolation, purification and partial sequence of a neuropeptide (DBI) precursor of an anxiogenic putative ligand for benzodiazepine recognition site. Neurosci Lett 47:319–324PubMedCrossRefGoogle Scholar
  27. 27.
    Emrich HM, Lund R (1991) Effect of the benzodiazepine antagonist Ro 15–1788 on sleep after withdrawal. Pharmacopsychiatry 18:171–173CrossRefGoogle Scholar
  28. 28.
    Izquierdo I, Medina JH (1991) GABAa receptor modulation of memory: the role of endogenous benzodiazepines. Trends Pharmacol Sci 12:260–265PubMedCrossRefGoogle Scholar
  29. 29.
    Sangameswaran L, Fales HM, Friedrich P, de Blas AL (1986) Purification of a benzodiazepine from bovine brain and detection of benzodiazepine-like immunoreactivity in human brain. Proc Natl Acad Sci USA 83:9236–9240PubMedCrossRefGoogle Scholar
  30. 30.
    Beer HF, Bläuenstein PA, Hasler PH et al. (1990) In vitro and in vivo evaluation of Iodine-123-Ro 16–0154: A new imaging agent for SPECT investigations of benzodiazepine receptors. J Nucl Med 31:1007–1014PubMedGoogle Scholar
  31. 31.
    Bartenstein P, Ludolph A, Schober O, Lottes G, Scheidhauer K, Sciuk J, Beer H-F (1991) Benzodiazepine receptors and cerebral blood flow in partial epilepsy. Eur J Nucl Med 18:111–118PubMedCrossRefGoogle Scholar
  32. 32.
    Bartenstein P, Lehmenkühler C, Sciuk J, Schuierer G (1992) Kortikale Dysplasie als epileptogener Fokus: Verminderte Bindung von 123I-Iomazenil bei unauffälliger Perfusion im 99mTC-HMPAO SPECT. Nucl Med 31:142–144Google Scholar
  33. 33.
    Verhoeff NPLG, Buell U, Costa DC (1992) Basics and recommendations for brain SPECT. Nucl Med 31:114–131Google Scholar
  34. 34.
    Woods SW, Seibyl JP, Goddard AW et al. (1992) Dynamic SPECT imaging after injection of the benzodiazepine receptor ligand 123I-iomazenil in healthy human subjects. Psychiatry Res 45:67–77PubMedCrossRefGoogle Scholar
  35. 35.
    Moerlein SM, Perlmutter JS, Parkinson D (1992) Fluorine-18 labelled ligands for benzodiazepine receptor studies with PET. J Nucl Med 32:883Google Scholar
  36. 36.
    Innis RB, Al-Tikriti MS, Zoghbi SS et al. (1991) SPECT imaging of the benzodiazepine receptor: feasibility of in vivo potency measurements from stepwise displacement curves. J Nucl Med 32:1754–1761PubMedGoogle Scholar
  37. 37.
    Lassen NA, Bartenstein PA, Lammertsma AA et al. (1995) Benzodiazepine receptor quantitation in vivo in human using C-11-Flumazenil and PET: application of the steady-state principle J Cereb Blood Flow Metab 15: 152–165Google Scholar
  38. 38.
    Abadie P, Baron JC, Bisserbe JC et al. (1992) Central benzodiazepine receptors in human brain: estimation of regional Bmax and KD values with positron emission tomography. Eur J Pharmacol 213:107–115PubMedCrossRefGoogle Scholar
  39. 39.
    Verhoeff NPLG, van Royen EA, Ell PJ, Costa DC, Hasler PH, Schubiger PA (1990) Benzodiazepine receptor density in human brain measured in vivo with 123I-Iomazenil SPECT. Schmidt HAE, van der Schoot JB (eds) Nuclear medicine: The state of the art of nuclear medicine in Europe. Schattauer, Stuttgart, pp 203–206Google Scholar
  40. 40.
    Bartenstein P, Ludolph A, Schober O, Lottes G, Böttger I, Beer H-F (1989) Vergleich von Blutfluss und Benzodiazepin-Rezeptorverteilung bei fokaler Epilepsie: Vorläufige Ergebnisse einer SPECT- Studie. Nucl Med 28:181–186Google Scholar
  41. 41.
    Hoell K, Deisenhammer E, Dauth J, Carmann H, Schubiger PA (1989) Imaging benzodiazepine receptors in the human brain by single photon emission computed tomography (SPECT). Nucl Med Biol 16:759–763Google Scholar
  42. 42.
    Maeda M, Komori H, Dohmoto H, Kojima M (1985) Synthesis of radioiodinated analogs of 2- phenyl pyrazolo [4, 3]I-quinolin-3-(5H)-one by a modified triazene method. J Label Compound Radiopharm 22:487–501CrossRefGoogle Scholar
  43. 43.
    Zecca L, Ferrario P (1988) Synthesis and biodistribution of an I-123-labelled flunitrazepam derivative: a potential in vivo tracer for benzodiazepine receptors. Appl Radiat Isot 39:353–356CrossRefGoogle Scholar
  44. 44.
    Saji H, Nakatsuka I, Iida I, Magata Y, Yoshitake Y, Konishi J, Yokoyama A (1989) Radioiodinated diazepam derivative for SPECT studies of benzodiazepine receptor. J Nucl Med 30:803–804Google Scholar
  45. 45.
    Zengpin G, Tianzhi T (1990) Radioiodinated alpha-buthylhydroxy-benzyl alcohol as a potential agent for benzodiazepine receptor imaging. Eur J Nucl Med 16:103CrossRefGoogle Scholar
  46. 46.
    Camsonne R, Crouzel C, Comar D, Maziere M, Prenant C, Sastre J, Moulin MA, Syrota A (1984) Synthesis of N-[HC]-methyl, N-(methyl-l-propyl),(chloro-2-phenyl9-l-isoquinoline carboxamide-3) (PK11195): a new ligand for peripheral benzodiazepine receptors. J Label Comp Radiopharm 21:985–991CrossRefGoogle Scholar
  47. 47.
    Benavides J, Cornu P, Dennis T et al. (1988) Imaging of human brain lesions with co3 site radioligand. Ann Neurol 24:708–712PubMedCrossRefGoogle Scholar
  48. 48.
    Junck L, Jewett DM, Kilbourn MR, Greenberg HS, Young AB, Kühl DE (1991) Brain tumor imaging with C-11PK11195, a ligand for the peripheral benzodiazepine binding site. J Cereb Blood Flow Metab ll[Suppl 2]:S594Google Scholar
  49. 49.
    Pike VW, Halldin C, Crouzel C et al. (1993) Radioligands for PET studies of central benzodiazepine receptors and PK (peripheral benzodiazepine) binding sites-current status. Nucl Med Biol 20:503- 525Google Scholar
  50. 50.
    Myers R, Manjil L, Cullen BM, Price GW, Frackowiak RSJ, Cremer J (1991) Macrophage and astrozyte populations in rat cerebral cortex following a local ischemic lesion. J Cereb Blood Flow Metab 11:314–322PubMedCrossRefGoogle Scholar
  51. 51.
    Ramsay SC, Weiller C, Myers R et al. (1992) Monitoring by PET of macrophage accumulation in brain after ischaemic stroke. Lancet 339:1054–1055PubMedCrossRefGoogle Scholar
  52. 52.
    Buchali K (1992) Ergebnisse von Verdrängungsuntersuchungen an Benzodiazepin-Rezeptoren. Nucl Med 31:29–31Google Scholar
  53. 53.
    Haldemann RC, Bicik I, Pfeiffer A, Wieser HG, Hasler PH, Schubiger PA, von Schulthess GK (1992) 123I-Iomazenil: a quantitative study of central benzodiazepine receptor distribution. Nucl Med 31:91–97Google Scholar
  54. 54.
    Schubiger PA, Hasler PH, Beer-Wohlfahrt H et al. (1991) Evaluation of a Multicenter Study with Iomazenil - a benzodiazepine Receptor ligand. Nucl Med Comm 12:569–582CrossRefGoogle Scholar
  55. 55.
    Olsen RW (1981) The GABA postsynaptic membrane receptor-ionophore complex. Mol Cell Biochem 39:261–279PubMedCrossRefGoogle Scholar
  56. 56.
    Snodgrass SR (1992) GABA and epilepsy: their complex relationship and the evolution of understanding. J Child Neurol 7:77–86PubMedCrossRefGoogle Scholar
  57. 57.
    Speckmann EJ, Waiden J (1992) Neurotransmitter und epileptische Aktivität. Nervenheilkd 11:233–238Google Scholar
  58. 58.
    Prince DA, Wilder BJ (1967) Control mechanisms in cortical epileptogenic foci. Arch Neurol 16:194–202PubMedGoogle Scholar
  59. 59.
    Elger CE, Speckmann EJ (1983) Penicillin-induced epileptic foci in the motorcortex: vertical inhibition. Electroencephalogr Clin Neurophysiol 56:604–622PubMedCrossRefGoogle Scholar
  60. 60.
    Ribak CE (1985) Axon terminals of GABAergic chandelier cells are lost at epileptic foci. Brain Res 326:251–260PubMedCrossRefGoogle Scholar
  61. 61.
    Sherwin A, Matthew E, Blain M, Guevremont D (1986) Benzodiazepine receptor binding is not altered in human epileptogenic cortical foci. Neurology 36:1380–1382PubMedGoogle Scholar
  62. 62.
    Savic I, Persson A, Roland P, Pauli S, Sedvall G, Widen L (1988) In vivo demonstration of reduced benzodiazepine receptor binding in human epileptic foci. Lancet 1:863–866CrossRefGoogle Scholar
  63. 63.
    Bekier A, Oettli R, Weder B (1990) 123I-Iomazenil: preliminary results. In: Schubiger PA, Hasler PH (eds) Iomazenil and other brain receptor tracers for SPECT. Editiones (Roche), Basel, pp 65–69Google Scholar
  64. 64.
    Cordes M, Henkes H, Ferstl F, Schmitz B, Hierholzer J, Schmidt D, Felix R (1992) Evaluation of focal epilepsy: a SPECT scanning comparison of 123I-Iomazenil versus HM-PAO. Am J Neuroradiol 13:249–253PubMedGoogle Scholar
  65. 65.
    Duncan S, Gillen GJ, Brodie MJ (1993) Lack of effect of concomitant clobazam on interictal 123I- Iomazenil SPECT. Epilepsy Res 15:61–66PubMedCrossRefGoogle Scholar
  66. 66.
    Van Huffelen AC, van Isselt JW, van Bentum AME et al. (1990) Localization of epileptic foci with 123I-Iomazenil SPECT. A comparison with 18FDG-PET and ictal EEG findings in patients with medically intractable complex partial seizures. In: Baldy-Moulinier M, Lassen NA, Engel J Jr, Askienazy S (eds) Focal epilepsy: clinical use of emission tomography. John Libbey, London, pp 123–131Google Scholar
  67. 67.
    Henry TR, Sackellares JC, Gilman S et al. (1991) Decreased mesial temporal [nC]Flumazenil binding with mesiolateral temporal hypometabolism in temporal lobe epilepsy. J Cereb Blood Flow Metab ll[Suppl 2]:S412Google Scholar
  68. 68.
    Savic I, Ingvar M, Stone-Elander S (1993) Comparison of nC-Flumazenil and 18F-FDG as PET markers of epileptic foci. J Neurol Neurosurg Psychiatry 56:615–621PubMedCrossRefGoogle Scholar
  69. 69.
    Bangerl I, Riccabonna G, Bauer G, Bohr K, Hasler PH, Schubiger PA (1989) 123I-Iomazenil brain SPECT in various forms of epilepsy (a preliminary report). Eur J Nucl Med 15:408Google Scholar
  70. 70.
    Nitzsche E, Landwehrmeyer B, Moser E, Lücking CH, Ott D, Hasler PH, Schubiger PA (1990) Hirn- SPECT mit Tc-99m-HM-PAO und J-123-Iomazenil bei Patienten mit fokaler Epilepsie und Morbus Alzheimer. In: Schubiger PA, Hasler PH (eds) Iomazenil and other brain receptor tracers for SPECT. Editiones (Roche), Basel, pp 65–69Google Scholar
  71. 71.
    Meyer MA, Koeppe RA, Frey KA, Foster NL, Kühl DE (1992) Benzodiazepine receptors are unaltered in hypometabolic parietal cortex in Alzheimer’s disease. J Nucl Med 33:887Google Scholar
  72. 72.
    Lloyd GK, Löwenthal A, Jawoy-Agid F, Constantinidis J (1991) GABAa receptor complex function in frontal cortex membranes from control and neurological patients. Eur J Pharmacol 197:33–39PubMedCrossRefGoogle Scholar
  73. 73.
    Shimohama S, Taniguchi T, Fujiwara M, Kameyama M (1988) Changes in benzodiazepine receptors in Alzheimer-type dementia. Ann Neurol 23:404–406PubMedCrossRefGoogle Scholar
  74. 74.
    Holthoff VA, Koeppe RA, Frey KA, Penney JB, Markel DS, Kühl DE, Young AB (1993) Positron emission tomography measures of benzodiazepine receptors in Huntington’s disease. Ann Neurol 34:76–81PubMedCrossRefGoogle Scholar
  75. 75.
    Mindus P, Ehrin E, Ericsson L et al. (1986) Central benzodiazepine receptor binding studied with 11-C labelled Ro 151788 and positron emission tomography. Pharmacopsychiatry 19:2–3CrossRefGoogle Scholar
  76. 76.
    Litton JE, Neiman J, Pauli S, Farde L, Hindmarsh T, Halldin C, Sedvall G (1993) PET analysis of [UC]Flumazenil binding to benzodiazepine receptors in chronic alcohol-dependent men and healthy controls. Psychiatry Res 50:1–13PubMedCrossRefGoogle Scholar
  77. 77.
    Odano I, Miyashita K, Minoshima S et al. (1993) Imaging of primary and remote ischemic brain lesions by in vivo autoradiogaphy: benzodiazepine binding sites and glucose metabolism. J Nucl Med 34:202PGoogle Scholar
  78. 78.
    Minoshima S, Frey KA, Koeppe RA, Chirnowitz MI, McCune WJ, Kühl DE (1993) Regional discordance between benzodiazepine receptor distribution and glucose metabolism in ischemic cerebral vascular disease. J Nucl Med 34:207PGoogle Scholar
  79. 79.
    Samson Y, Bernuau J, Pappata S, Chavoix C, Baron JC, Maziere MA (1987) Cerebral uptake of benzodiazepine measured by positron emission tomography in hepatic encephalopathy. N Engl J Med 316:414–415PubMedCrossRefGoogle Scholar
  80. 80.
    Zoghbi SS, Baldwin RM, Seibyl JP et al. (1992) Pharmacokinetics of the SPECT benzodiazepine receptor ligand [123I]Iomazenil in human and non-human primates. Int J Rad Appl Instrum [B] 19:881–888CrossRefGoogle Scholar
  81. 81.
    Sybirska E, Seibyl JP, Bremner JD et al. (1993) [123I]Iomazenil SPECT imaging demonstrates significant benzodiazepine receptor reserve in human and nonhuman primate brain. Neuropharmacology 32:671–680PubMedCrossRefGoogle Scholar
  82. 82.
    Videbaek C, Friberg L, Holm S et al. (1993) Benzodiazepine receptor equilibrium constants for flumazenil and midazolam determined in humans with the single photon emission computer tomography tracer [123I]Iomazenil. Eur J Pharmacol 249:43–51PubMedCrossRefGoogle Scholar
  83. 83.
    Lassen NA (1992) Neuroreceptor quantitation in vivo by the steady state principle using constant infusion or bolus injection of radioactive tracers. J Cereb Blood Flow Metab 12:709–716PubMedCrossRefGoogle Scholar
  84. 84.
    Maziere M, Hantraye P, Prenant C, Sastre J, Comar D (1984) Synthesis of ethyl 8-Fluoro-5, 6-dihydroxy-5- [1 l C] methyl-6-oxo-4H-imidazo [1,5-a] [1,4]benzodiazepine-3-carboxylate (RO 15.1788-nC): a specific radioligand for the in vivo study of central benzodiazepine receptors by positron emission tomography. Int J Appl Radiat Isot 35:973–976PubMedCrossRefGoogle Scholar
  85. 85.
    Moerlein SM, Welch MJ (1991) Application of SPECT in the in vivo measurement of benzodiazepine potency. J Nucl Med 32:1762–1763PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • P. Bartenstein

There are no affiliations available

Personalised recommendations