Skip to main content

SPECT-Untersuchungen bei degenerativen Krankheiten des Gehirns

  • Chapter
  • 27 Accesses

Zusammenfassung

Degenerative Krankheiten des Gehirns sind durch einen fortschreitenden Verlust an Nervenzellen gekennzeichnet; dieser betrifft zumindest initial nicht diffus das gesamte Gehirn, sondern beschränkt sich auf je nach Krankheit verschiedene Anteile der grauen Substanz [1, 2]. Die Ursache des Neuronenverlustes ist bei den meisten dieser Krankheiten bisher ungeklärt. Neuropathologisch findet sich in den Anfangsstadien eine Verminderung der regionalen Nervenzelldichte, die bei ihrem Fortschreiten zur Verringerung des Volumens der beteiligten zerebralen Strukturen, zur sog. Atrophie, führt.

Bei Frau Dr. med. Cornelia Puskas (Klinik und Poliklinik für Nuklearmedizin, WWU Münster) bedanke ich mich für die wiederholte kritische Durchsicht des Manuskriptes. Frau Papenberg (Klinik und Poliklinik für Nuklearmedizin, WWU Münster) und Herrn Dr. med. Norbert Czech (Institut für Medizin, KFA Jülich) gilt mein Dank für die Mithilfe bei der Erstellung der Abbildungen.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   64.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Oppenheimer DR, Esiri MM (1991) Diseases of the basal ganglia, cerebellum and motor neurons. In: Adams JH, Duchen LW (eds) Greenfield’s Neuropathology, 5th edn. Edward Arnold, London, pp 988–1045

    Google Scholar 

  2. Adams RD, Victor M (1989) Principles of neurology, 4th edn. McGraw-Hill, New York

    Google Scholar 

  3. English RJ, Brown SE (1990) SPECT Single-photon emission tomography: A primer, 2nd edn. The Society of Nuclear Medicine Inc., New York

    Google Scholar 

  4. Kuwert T, Sures T, Herzog H, Loken M, Hennerici M, Langen KJ, Feinendegen LE (1992) On the influence of spatial resolution and of the size and form of regions of interest on the measurement of regional cerebral metabolic rates by positron emission tomography. J Neural Transm 37[Suppl]:53–66

    CAS  Google Scholar 

  5. Mazziotta JC, Phelps ME, Plummer D, Kühl DE (1981) Quantification in positron emission tomography: 5. Physical-anatomical effects. J Comput Assist Tomogr 5:734–743

    Article  PubMed  CAS  Google Scholar 

  6. Horwitz B (1990) Quantification and analysis of positron emission tomography metabolic data. In: R. Duara (ed) Positron emission tomography in dementia. Wiley-Liss, Inc, New York (Frontiers of Clinical Neuroscience, Vol 10, pp 13–70)

    Google Scholar 

  7. Müller-Gärtner HW, Links JM et al. (1992) Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MRI-based correction for partial volume effects. J Cereb Blood Flow Metab 12:571–583

    Article  PubMed  Google Scholar 

  8. Mazziotta JC, Phelps ME, Pähl J J et al. (1987) Reduced cerebral glucose metabolism in asymptomatic subjects at risk for Huntingtons’s disease. N Engl J Med 316:357–362

    Article  PubMed  CAS  Google Scholar 

  9. Kuwert T, Lange HW, Boecker H et al. (1993) Striatal glucose consumption in chorea-free subjects at risk of Huntigton’s disease. J Neurol 241:31–36

    Article  PubMed  CAS  Google Scholar 

  10. Wyper D, Teasdale E, Patterson J et al. (1993) Abnormalities in rCBF and computed tomography in patients with Alzheimer’s disease and in controls. Br J Radiol 66:23–27

    Article  PubMed  CAS  Google Scholar 

  11. Alavi A, Hirsch LJ (1991) Studies of central nervous system disorders with single photon emission computed tomography and positron emission tomography: evolution over the past 2 decades. Semin Nucl Med 21:58–81

    CAS  Google Scholar 

  12. Rota-Kops E, Herzog H, Schmid A, Holte S, Feinendegen LE (1990) Performance characteristics of an eight-ring whole body PET scanner. J Comput Assist Tomogr 14:437–445

    Article  PubMed  CAS  Google Scholar 

  13. Szabo Z, Links JM, Seki C, Rhine J, Wagner HN Jr (1992) Scatter, spatial resolution, and quantitative recovery in high resolution SPECT. J Comput Assist Tomogr 16:461–467

    Article  PubMed  CAS  Google Scholar 

  14. Coubes P, Awad I A, Antar M, Magdinec M, Sufka B (1993) Comparison and spatial correlation of interictal HMPAO-SPECT and FDG-PET in intractable temporal lobe epilepsy. Neurol Res 15:160–168

    PubMed  CAS  Google Scholar 

  15. Mess CA, Perani D, Lucignani G et al. (1994) High-resolution technetium-99m-HMPAO SPECT in patients with probable Alzheimer’s disease: comparison with fluorine- 18-FDG PET. J Nucl Med 35:210–216

    Google Scholar 

  16. Boecker H, Kuwert T, Langen KJ, et al. (1994) SPECT with HMPAO Compared to PET with FDG in Huntington Disease. J Comput Assist Tomogr 18(4):542–548

    Article  PubMed  CAS  Google Scholar 

  17. Nunn AD (ed) (1992) Radiopharmaceuticals chemistry and pharmacology. Marcel Dekker, New York

    Google Scholar 

  18. Stöcklin G (1992) Tracers for metabolic imaging of brain and heart. Eur J Nucl Med 19:527–551

    Article  PubMed  Google Scholar 

  19. Kung HF (1992) Iodine Labeled Brain Perfusion Imaging Agents. In: Nunn AD (ed) Radiopharmaceuticals chemistry and pharmacology. Marcel Dekker, New York, pp 141–166

    Google Scholar 

  20. Nowotnik DP (1992) Technetium-based brain perfusion agents. In: Nunn AD (ed) Radiopharmaceuticals chemistry and pharmacology. Marcel Dekker, New York, pp 37–96

    Google Scholar 

  21. Kung HF, Alavi A, Chang W et al. (1990) In vivo SPECT imaging of CNS D-2 dopamine receptors: initial studies with iodine-123-IBZM in humans. J Nucl Med 31:573–589

    PubMed  CAS  Google Scholar 

  22. Bangerl I, Hunkeler W, Bonette EP, Pieri L, Richards JG, Schubiger PA (1990) In vitro and in vivo evaluation of iodine-123-Ro 16–0154: a new imaging agent for SPECT investigations of benzodiazepine receptors. J Nucl Med 31:1007–1014

    PubMed  Google Scholar 

  23. Innis RB (1994) Single-photon emission tomography imaging of dopamine terminal innervation: a potential clinical tool in Parkinson’s disease. Eur J Nucl Med 21:1–5

    Article  PubMed  CAS  Google Scholar 

  24. Bruyn GW, Went LN (1985) Huntingtons’s chorea. In: Vinken PJ, Bruyn GW, Klawans HL (eds) Handbook of Clinical Neurology. Elsevier Science, Amsterdam, pp 267–314

    Google Scholar 

  25. Hayden MR, Martin WRW, Stoessl AJ (1986) Positron emission tomography in the early diagnosis of Huntington’s disease. Neurology 36:888–894

    PubMed  CAS  Google Scholar 

  26. Grafton ST, Mazziotta JC, Pähl J J et al. (1990) A comparison of neurological, metabolic, structural, and genetic evaluations in persons at risk for Huntington’s disease. Ann Neurol 28:614–621

    Article  PubMed  CAS  Google Scholar 

  27. Smith FW, Besson JA, Gemmell HG, Sharp PF (1988) The use of technetium-99m-HMPAO in the assessment of patients with dementia and other neuropsychiatric conditions. J Cereb Blood Flow Metab 8[Suppl 1]:116–122

    Article  Google Scholar 

  28. Ichise M, Toyama H, Fornazzari L, Ballinger JR, Kirsh JC (1993) Iodine-23-IBZM dopamine D2 receptor and technetium-99m-HMPAO brain perfusion SPECT in the evaluation of patients with and subjects at risk for Huntington’s disease. J Nucl Med 34:1274–1281

    PubMed  CAS  Google Scholar 

  29. Brücke T, Podreka I, Angelberger P et al. (1991) Dopamine D2 receptor imaging with SPECT: studies in different neuropsychiatric disorders. J Cereb Blood Flow Metab 11:220–228

    Article  PubMed  Google Scholar 

  30. Gusella JF, Wexler NS, Conneally PM et al. (1983) A polymorphic DNA marker, genetically linked to Huntington’s disease. Nature 306:234

    Article  PubMed  CAS  Google Scholar 

  31. Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983

    Article  Google Scholar 

  32. Grafton ST, Mazziotta JC, Pähl JJ et al. (1992) Serial changes of cerebral glucose metabolism and caudate size in persons at risk for Huntington’s disease. Arch Neurol 49:1161–1167

    PubMed  CAS  Google Scholar 

  33. Kuwert T, Hefter H, Scholz D et al. (1992) Regional cerebral glucose consumption measured by positron emission tomography in patients with Wilson’s disease. Eur J Nucl Med 19:96–101

    Article  PubMed  CAS  Google Scholar 

  34. Oertel WH, Tatsch K, Schwarz J et al. (1992) Decrease of D2 receptors indicated by 123- Iodobenzamide single-photon emission computed tomography relates to neurological deficit in treated Wilson’s disease. Ann Neurol 32:743–748

    Article  PubMed  CAS  Google Scholar 

  35. de Voider AG, Francart J, Laterre C, Dooms G, Bol A, Michel C, Goffinet AM (1989) Decreased glucose utilization in the striatum and frontal lobe in probable striatonigral degeneration. Ann Neurol 26:239–247

    Article  Google Scholar 

  36. Hosokawa S, Ichiya Y, Kuwabara Y, Ayabe Z, Mitsuo K, Goto I, Kato M (1987) Positron emission tomography in cases of chorea with different underlying diseases. J Neurol Neurosurg Psychiatr 50:1284–1287

    Article  PubMed  CAS  Google Scholar 

  37. Dubinsky RM, Hallett M, Levey B, Di Chiro G (1989) Regional brain glucose metabolism in neuroacanthocytosis. Neurology 39:1253–1255

    PubMed  CAS  Google Scholar 

  38. Suchowersky O, Hayden MR, Martin WR, Stoessl AJ, Hildebrand AM, Patè BD (1986) Cerebral metabolism of glucose in benign hereditary chorea. Mov Disord 1:33–44

    Article  PubMed  CAS  Google Scholar 

  39. Carnett ES, Firnau G, Nahmias C (1983) Dopamine visualized in the basal ganglia of living man. Nature 305:137–138

    Article  Google Scholar 

  40. Firnau G, Sood S, Chirakal R, Nahmias C, Garnett ES (1987) Cerebral metabolism of 6-(18F)fluoro- L-dopa in the primate. J Neurochem 48:1077–1082

    Article  PubMed  CAS  Google Scholar 

  41. Leenders KL, Palmer AJ, Quinn N et al. (1986) Brain dopamine metabolism in patients with Parkinson’s disease measurement positron emission tomography. J Neurol Neurosurg Psychiatr 49:853–856

    Article  PubMed  CAS  Google Scholar 

  42. Leenders KL, Salmon EP, Turton D et al. (1990) The nigrostriatal dopaminergic system assessed in vivo by positron emission tomography in healthy volunteer subjects and patients with Parkinson’s disease. Arch Neurol 47:1290–1298

    PubMed  CAS  Google Scholar 

  43. Martin WRW, Palmer MR, Patlak CS, Calne DB (1989) Nigrostriatal function in humans studied with positron emission tomography. Ann Neurol 26:535

    Article  PubMed  CAS  Google Scholar 

  44. Barbeau A (1985) Parkinson’s disease: clinical features and etiopathology. In: Vinken PJ, Bruyn GW, Klawans HL (eds) Handbook of clinical neurology. Elsevier Science, Amsterdam, pp 87–152

    Google Scholar 

  45. Takei Y, Mirra SS (1973) Striatonigral degeneration: a form of multiple system atrophy with clinical parkinsonism. In: Zimmerman HM (ed) Progress in neuropathology, vol 2. Grune & Stratton, New York, pp 217–251

    Google Scholar 

  46. Jackson JA, Jankovic J, Ford J (1983) Progressive supranuclear palsy: clinical features and response to treatment in 16 patients. Ann Neurol 13:273–278

    Article  PubMed  CAS  Google Scholar 

  47. Duvoisin RC (1984) An apology and an introduction to the olivopontocerebellar atrophies. Adv Neurol 41:5–12

    PubMed  CAS  Google Scholar 

  48. Leenders KL, Frackowiak PS J, Lees AJ (1988) Steele-Richardson-Olszewski syndrome. Brain energy metabolism, blood flow and fluorodopa uptake measured by positron emission tomography. Brain 111:615–630

    Article  PubMed  Google Scholar 

  49. Goffinet AM, de Voider AG, Gillain C et al. (1989) Positron tomography demonstrates frontal lobe hypometabolism in progressive supranuclear palsy. Ann Neurol 25:131–139

    Article  PubMed  CAS  Google Scholar 

  50. Blin J, Baron JC, Dubois B, Pillon B, Cambon H, Cambier J, Agid Y (1990) Positron emission tomography study in progressive supranuclear palsy. Brain hypometabolic pattern and cli- nicometabolic correlation. Arch Neurol 47:747–752

    PubMed  CAS  Google Scholar 

  51. Habert MO, Spampinato U, Mas JL et al. (1991) A comparative technetium-99m-hexa- methylpropylene amine oxime SPET study in different types of dementia. Eur J Nucl Med 18: 3–11

    Article  PubMed  CAS  Google Scholar 

  52. Schwarz J, Tatsch K, Arnold G, Gasser T, Trenkwalder C, Kirsch CM, Oertel WH (1992) 123- iodobenzamide-SPECT predicts dopaminergic responsiveness in patients with de novo Parkinsonism. Neurology 42:556–561

    PubMed  CAS  Google Scholar 

  53. Troy L, Thompson II (1987) Dementia. In: Hales RE, Yudofsky SC (eds) Textbook of neuropsychiatry. American Psychiatric Press, Washington DC, pp 107–124

    Google Scholar 

  54. McKhann G, Drachman D, Folstein M et al. (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology 34:939–944

    PubMed  CAS  Google Scholar 

  55. Frackowiak RSJ, Pozzilli C, Legg NJ, Du Boulay GH, Marshall J, Lenzi GL, Jones T (1981) Regional cerebral oxygen supply and utilization in dementia: a clinical and physiological study with oxygen- 15 and positron tomography. Brain 104:753–778

    Article  PubMed  CAS  Google Scholar 

  56. Burns A, Philpot MP, Costa DC, Ell PJ, Levy R (1989) The investigation of Alzheimer’s disease with single photon emission tomography. J Neurol Neurosurg Psychiatry 52:248–253

    Article  PubMed  CAS  Google Scholar 

  57. Montaldi D, Brooks DN, McColl JH et al. (1990) Measurements of regional cerebral blood flow and cognitive performance in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 53:33–38

    Article  PubMed  CAS  Google Scholar 

  58. Battistin L, Pizzolato G, Dam M et al. (1990) Regional cerebral blood flow study with 99mTc- hexamethyl-propylene amine oxime single photon emission tomography in Alzheimer’s and multi- infarct dementia. Eur Neurol 30:296–301

    Article  PubMed  CAS  Google Scholar 

  59. Hurwitz TA, Ammann W, Chu D, Clark C, Holden J, Brownstone R (1991) Single photon emission computed tomography using 99mTcHMPAO in the routine evaluation of Alzheimer’s disease. Can J Neurol Sei 18:59–62

    CAS  Google Scholar 

  60. Habert MO, Spampinato U, Mas JL et al. (1991) A comparative technetium 99m hexamethylpropylene amine oxime SPET sudy in different types of dementia. Eur J Nucl Med 18:3–11

    Article  PubMed  CAS  Google Scholar 

  61. Perani D, Di Piero V, Vallar G et al. (1988) Technetium-99m HMPAO SPECT study of regional cerebral perfusion in early Alzheimer’s disease. J Nucl Med 29:1507–1514

    PubMed  CAS  Google Scholar 

  62. Holman BL, Johnson KA, Gerada B, Carvalho PA, Satlin A (1992) The scintigraphic appearance of Alzheimer’s disease: a prospective study using technetium-99m HMPAO SPECT. J Nucl Med 33:181–185

    PubMed  CAS  Google Scholar 

  63. O’Brien JT, Eagger S, Syed GMS, Sahakian BJ, Levy R (1992) A study of regional cerebral blood flow and cognitive performance in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 55:1181–1187

    Google Scholar 

  64. Burns A, Philpot MP, Costa DC, Ell PJ, Levy R (1989) The investigation of Alzheimer’s disease with single photon emission tomography. J Neurol Neurosurg Psychiatry 52:248–253

    Article  PubMed  CAS  Google Scholar 

  65. Chase TN, Fedio P, Foster NL, Brooks R, Di Chiro G, Mansi L (1984) Wechsler Adult Intelligence Scale performance: cortical localization by fluorodeoxyglucose Fl8 positron emission tomography. Arch Neurol 41:1244–1247

    PubMed  CAS  Google Scholar 

  66. de Leon MJ, Ferris SH, George AE et al. (1983) Positron emission tomographic studies of aging and Alzheimer’s disease. AJNR 4:568–571

    PubMed  Google Scholar 

  67. Grady CL, Haxby JV, Shapiro MB et al. (1990) Subgroups in dementia of the Alzheimer type identified using positron emission tomography. J Neuropsychiatry Clin Neurosci 2:373–384

    PubMed  CAS  Google Scholar 

  68. Haxby JV, Duara R, Grady CL, Cutler NR, Rapoport SI (1985) Relations between neuropsychological and cerebral metabolic asymmetries in early Alzheimer’s disease. J Cereb Blood Flow Metab 5:193–200

    Article  PubMed  CAS  Google Scholar 

  69. Hunter R, McLuskie R, Wyper D et al. (1989) The pattern of function-related regional cerebral blood flow investigated by single photon emission tomography with 99mTc-HMPAO in patients with presenile Alzheimer’s disease and Korsakoff’s psychosis. Psychol Med 19:847–855

    Article  PubMed  CAS  Google Scholar 

  70. Montaldi D, Brooks DN, McColl JH et al. (1990) Measurements of regional cerebral blood flow and cognitive performance in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 53:33–38

    Article  PubMed  CAS  Google Scholar 

  71. Eberling JL, Reed BR, Baker MG, Jagust WJ (1993) Cognitive correlates of regional cerebral blood flow in Alzheimer’s disease. Arch Neurol 50:761–766

    PubMed  CAS  Google Scholar 

  72. Perani D, Di Piero V, Vallar G (1988) Technetium-99m HMPAO-SPECT Study of regional cerebral perfusion in early Alzheimer’s disease. J Nucl Med 29:1507–1514

    PubMed  CAS  Google Scholar 

  73. Claus JJ, van Harskamp F, Breteler MMB (1994) The diagnostic value of SPECT with Tc 99m HMPAO in Alzheimer’s disease. Neurology 44:454–461

    PubMed  CAS  Google Scholar 

  74. Benson DF, Kühl DE, Hawkins RA, Phelps ME, Cummings JL, Tsai SW (1983) The fluorodeoxyglucose 18F scan in Alzheimer’s disease and multi-infarct dementia. Arch Neurol 40:711–714

    PubMed  CAS  Google Scholar 

  75. Salmon E, Sadzot B, Maquet P et al. (1994) Differential diagnosis of Alzheimer’s disease with PET. J Nucl Med 35:391–398

    PubMed  CAS  Google Scholar 

  76. Neary D, Snowden JS, Shields RA et al. (1987) Single photon emission tomography using 99mTc- HMPAO in the investigation of dementia. J Neurol Neurosurg Psychiatry 50:1101–1109

    Article  PubMed  CAS  Google Scholar 

  77. Chawluk JB, Mesulam MM, Hurtig H et al. (1986) Slowly progressive aphasia without generalized dementia: studies with positron emission tomography. Ann Neurol 19:68–74

    Article  PubMed  CAS  Google Scholar 

  78. Jagust WJ, Friedland RP, Budinger TF (1985) Positron emission tomography differentiates normal pressure hydrocephalus from Alzheimer’s disease. J Neurol Neurosurg Psychiatry 48:1091–1096

    Article  PubMed  CAS  Google Scholar 

  79. Kühl DE, Metter EJ, Riege WH (1985) Patterns of cerebral glucose utilization in depression, multiple infarct dementia, and Alzheimer’s disease. In: Sokoloff L (ed) Brain imgaging and brain function. Raven, New York, pp 211–226

    Google Scholar 

  80. McKeith IG, Bartholomew PH, Irvine EM, Cook J, Adams R, Simpson AES (1993) Single photon emission computerised tomography in elderly patients with Alzheimer’s disease and multi-infarct dementia. Regional uptake of technetium-labelled HMPAO related to clinical measurements. Br J Psychiatry 163:597–603

    Article  PubMed  CAS  Google Scholar 

  81. Waldemar G, Schmidt JF, Delecluse F, Andersen AR, Gjerris F, Paulson OB (1993) High resolution SPECT with 99mTc-d,I-HMPAO in normal pressure hydrocephalus before and after shunt operation. J Neurol Neurosurg Psychiatry 56:655–664

    Article  PubMed  CAS  Google Scholar 

  82. Weinberger DR, Jones D, Reba RC et al. (1992) A comparison of FDG PET and IQNB SPECT in normal subjects and in patients with dementia. J Neuropsychiatry Clin Neurosci 4:239–248

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kuwert, T. (1995). SPECT-Untersuchungen bei degenerativen Krankheiten des Gehirns. In: Wieler, H.J. (eds) Single-Photon-Emissions-Computertomographie (SPECT) des Gehirns. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79222-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79222-9_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79223-6

  • Online ISBN: 978-3-642-79222-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics