Skip to main content
  • 27 Accesses

Zusammenfassung

Die Diskussion über Sinn und Nutzen einer emissionstomographischen Untersuchung des Gehirns wird nirgends kontroverser geführt als auf dem Gebiet der psychiatrischen Erkrankungen. Dies rührt daher, daß die Ergebnisse der bildgebenden Verfahren in der Psychiatrie anfangs als wenig hilfreich angesehen wurden, insbesondere die Ergebnisse der strukturabbildenden Untersuchungen. Hier sind allenfalls organische Psychosyndrome ihrer Diagnose nähergebracht worden. Eine neue Ära wurde mit der Einführung der funktionsabbildenden Verfahren eingeläutet, allen voran die Positronenemissionstomographie (PET), die Schnittbilder von Perfusion und Glukose-metabolismus in Abhängigkeit von Funktion und Stimulation darstellte. Damit war zum ersten Mal die Möglichkeit gegeben, Veränderungen der Hirnfunktion bei psychiatrischen Erkrankungen auf definierte anatomische Strukturen zu projizieren und mittels externer oder pharmakologischer Stimulation physiologische und pathologische Reaktionsmuster zu dokumentieren. Man erkannte, daß eine “physiologische Dysfunktion” eine “Verhaltensabnormalität” auslöst [1, 2]. Es zeigten sich Ansätze, ein neuronales System des Gehirns mit verschiedenen Ausdrucksformen und damit verschiedenen “Qualitäten” eines Krankheitsbildes, z.B. der Depression, in Verbindung zu bringen (Tabelle 4.1). Damit konnte der Weg des “functional imaging”, der einst bei Broca begann, über Penfield, Rasmussen und Lassen weitergeführt werden bis Sokoloff, Reivich und Ido in unsere Tage [3].

Jahrhundertelang stellten die traurigen Gesichter der Patienten die einzige Ansicht dar, die Psychiater von der klinischen Depression hatten.

Mark S. George

Unter Mitwirkung von D. Ebert und G. Platsch.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Kumar A (1993) Functional brain imaging in late-life depression and dementia. J Clin Psychiatry 54[Suppl 11]:21–25

    PubMed  Google Scholar 

  2. Cummings JL (1993) The neuroanatomy of depression. J Clin Psychiatry 54[Suppl]:14–20

    PubMed  Google Scholar 

  3. Reba RC (1993) PET and SPECT:opportunities and challenges for psychiatry. J Clin Psychiatry 54[Suppl]:26–32

    PubMed  Google Scholar 

  4. Barocka A, Feistel H, Ebert D, Lungershausen E (1994) SPECT in der Psychiatrie. In: Helmchen H, Hippius H. (Hrsg) Der gestörte Schlaf. MMV Medizin, München (Psychiatrie für die Praxis, Bd 19, S 130–139)

    Google Scholar 

  5. Maurer AH ‘(1988) Nuclear medicine: SPECT comparisons to PET. Radiol Clin North Am 26:1059–1074

    PubMed  CAS  Google Scholar 

  6. Feistel H (1991) SPECT in der Gehirndiagnostik. Nuklearmediziner 5, 14:306–323

    Google Scholar 

  7. Podreka I, Suess E, Goldenberg G et al. (1987) Initial experience with technetium-99m HM-PAO brain SPECT. J Nucl Med 28:1657–1666

    PubMed  CAS  Google Scholar 

  8. American Psychiatric Association (1987) Diagnostic, and statistical manual of mental disorders, 3rd edn rev. Washington DC

    Google Scholar 

  9. Weltgesundheitsorganisation (1991) Internationale Klassifikation psychischer Störungen ICD10, Kap. V(F): Klinisch-diagnostische Leitlinien. Hans Huber, Bern

    Google Scholar 

  10. Van Heertum RL (1992) Brain SPECT imaging and psychiatry. J Clin Psychiatry 53[Suppl]:7–12

    PubMed  Google Scholar 

  11. Clark CM, Kopala L, James G, Hurwitz T, Li D (1993) Metabolic subtypes in patients with schizophrenia. Biol Psychiatry 33:86–92

    Article  PubMed  CAS  Google Scholar 

  12. Cleghorn JM, Zipursky RB, List SJ (1991) Structural and functional brain imaging in schizophrenia. J Psychiatry Neurosci 16:53–74

    PubMed  CAS  Google Scholar 

  13. Kishimoto H, Kuwahara H, Ohno S et al. (1987) Three subtypes of chronic schizophrenia identified using llC-glucose positron emission tomography [published erratum appears in Psychiatry Res 1988 Mar; 23(3):353]. Psychiatry Res 21:285–292

    Article  PubMed  CAS  Google Scholar 

  14. Resnick SM, Gur RE, Alavi A, Gur RC, Reivich M (1988) Positron emission tomography and subcortical glucose metabolism in schizophrenia. Psychiatry Res 24:1–11

    Article  PubMed  CAS  Google Scholar 

  15. Wiesel FA (1992) Metabolic approaches to physiologic subtyping of schizophrenia. Clin Neuropharmacol 15[Suppl 1 Pt A]:26A–27A

    PubMed  Google Scholar 

  16. Ingvar D, Franzen G (1974) Distribution of cerebral activity in chronic schizophrenia. Lancet 2:1484–1486

    Article  PubMed  CAS  Google Scholar 

  17. Buchsbaum MS, Ingvar DH, Kessler R (1982) Cerebral glucography with positron tomography. Arch Gen Psychiatry 39:251–259

    PubMed  CAS  Google Scholar 

  18. Gur RE, Resnick SM, Gur RC (1989) Laterality and frontality of cerebral blood flow and metabolism in schizophrenia: relationship to symptom specificity. Psychiatry Res 27:325–334

    Article  PubMed  CAS  Google Scholar 

  19. Volkow ND, Brodie JD, Wolf AP (1986) Brain metabolism im patients with schizophrenia before and after acute neuroleptic administration. J Neurol Neurosurg Psychiatry 49:1199–1202

    Article  PubMed  CAS  Google Scholar 

  20. Weinberger DR, Berman KF (1988) Speculation on the meaning of cerebral metabolic hypofrontality in schizophrenia. Schizophr Bull 14:157–168

    PubMed  CAS  Google Scholar 

  21. Woods SW (1992) Regional cerebral blood flow imaging with SPECT in psychiatric disease: focus on schizophrenia, anxiety disorders, and substance abuse. J Clin Psychiatry 53[Suppl]: 20–25

    PubMed  Google Scholar 

  22. Hawton K, Shepston B, Soper N (1990) Single photon emission computerized tomography (SPECT) in schizophrenia. Br J Psychiatry 156:425–427

    Article  PubMed  CAS  Google Scholar 

  23. Schroeder J, Sauer H, Wilhelm KR, Niedermeier T, Georgi P (1989) Regional cerebral blood flow in endogenous psychoses: a Tc-99m HMPAO-SPECT pilot study. Psychiatry Res 29:331–333

    Article  PubMed  CAS  Google Scholar 

  24. Cohen MB, Lake RR, Graham LS et al. (1989) Quantitative iodine-123 IMP imaging of brain perfusion in schizophrenia. J Nucl Med 30:1616–1620

    PubMed  CAS  Google Scholar 

  25. Van Heertum RL, O’Connell RA, Holt AR (1988) Evaluation of major psychosis with cerebral SPECT. J Nucl Med 29:921 (Abstract)

    Google Scholar 

  26. Bajc M, Medved V, Basic M, Topuzovic N, Babic D (1989) Cerebral perfusion inhomogeneities in schizophrenia demonstrated with single photon emission computed tomography and Tc99m- hexamethylpropyleneamineoxim. Acta Psychiatr Scand 80:427–433

    Article  PubMed  CAS  Google Scholar 

  27. DeLisi LE, Buchsbaum MS, Holcomb HH et al. (1989) Increased temporal lobe glucose use in chronic schizophrenic patients. Biol Psychiatry 25:835–851

    Article  PubMed  CAS  Google Scholar 

  28. Buchsbaum MS (1990) The frontal lobes, basal ganglia, and temporal lobes as sites for schizophrenia. Schizophr Bull 16:379–389

    PubMed  CAS  Google Scholar 

  29. Buchsbaum MS, Haier RJ, Potkin SG et al. (1992) Frontostriatal disorder of cerebral metabolism in never-medicated schizophrenics. Arch Gen Psychiatry 49:935–942

    PubMed  CAS  Google Scholar 

  30. Buchsabaum MS, Potkin S, Siegel B et al. (1992) PET studies of drug interaction with brain regional glucose metabolism. Clin Neuropharmacol 15[Suppl 1 Pt A]:472A–473A

    Google Scholar 

  31. Buchsbaum MS, Potkin SG, Siegel BV Jr, Lohr J, Katz M, Gottschalk LA, Gulasekaram B, Marshall JF, Lottenberg S, Teng CY et al. (1992) Striatal metabolic rate and clinical response to neuroleptics in schizophrenia. Arch Gen Psychiatry 49:966–974

    PubMed  CAS  Google Scholar 

  32. Van Heertum RL, O’Connell RA (1991) Functional brain imaging in the evaluation of psychiatric illness. Semin Nucl Med 21:24–39

    Article  PubMed  Google Scholar 

  33. List SJ, Cleghorn JM (1993) Implications of positron emission tomography research for the investigation of the actions of antipsychotic drugs. Br J Psychiatry [Suppl]:25–30

    Google Scholar 

  34. Sedvall G (1992) The current status of PET scanning with respect to schizophrenia. Neuropsychopharmacology 7:41–54

    PubMed  CAS  Google Scholar 

  35. Wiesel FA (1992) The significance of the D2 dopamine receptor in schizophrenia as studied with PET. Clin Neuropharmacol 15[Suppl 1 Pt A]:460A–461A

    PubMed  Google Scholar 

  36. Wiesel FA, Farde L, Nordstrom AL, Sedvall G (1990) Central Dl- and D2-receptor occupancy during antipsychotic drug treatment. Prog Neuropsychopharmacol Biol Psychiatry 14:759–767

    Article  PubMed  CAS  Google Scholar 

  37. Wong DF, Wagner HN Jr, Tune LE et al. (1986) Positron emission tomography reveals elevated D2 dopamine receptors in drug-naive schizophrenics [published erratum appears in Science 1987 Feb 6;235(4789):623]. Science 234:1558–1563

    Article  PubMed  CAS  Google Scholar 

  38. Pilowsky LS, Costa DC, Ell PJ, Murray RM, Verhoeff NP, Kerwin RW (1992) Clozapine, single photon emission tomography, and the D2 dopamine receptor blockade hypothesis of schizophrenia. Lancet 340:199–202

    Article  PubMed  CAS  Google Scholar 

  39. Coppens HJ, Slooff CJ, Paans AM, Wiegman T, Vaalburg W, Korf J (1991) High central D2- dopamine receptor occupancy as assessed with positron emission tomography in medicated but therapy-resistant schizophrenic patients. Biol Psychiatry 29:629–634

    Article  PubMed  CAS  Google Scholar 

  40. Martinot JL, Paillere Martinot ML, Loc’h C et al. (1991) The estimated density of D2 striatal receptors in schizophrenia. A study with positron emission tomography and 76Br-bromolisuride. Br J Psychiatry 158:346–350

    Article  PubMed  CAS  Google Scholar 

  41. Matsuda H, Gyobu T, Ii M (1988) Iodine-123 iodoamphetamine brain scan in a patient with auditory halluzinations. J Nucl Med 29:558–560

    PubMed  CAS  Google Scholar 

  42. Musalek M, Podreka I, Suess E et al. (1988) Neurophysiological aspects of auditory hallucinations. 99mTc-(HMPAO)-SPECT investigations in patients with auditory hallucinations and normal controls - a preliminary report. Psychopathology 21:275–280

    Article  PubMed  CAS  Google Scholar 

  43. Musalek M, Podreka I, Walter H et al. (1989) Regional brain function in hallucinations: a study of regional cerebral blood flow with 99m-Tc-HMPAO-SPECT in patients with auditory hallucinations, tactile hallucinations, and normal controls. Compr Psychiatry 30:99–108

    Article  PubMed  CAS  Google Scholar 

  44. Erkwoh R, Ebel H, Kachel F, Reiche W, Ringelstein EB, Büll U, Sass H (1993) 18FDG-PET and electroencephalographic findings in a patient suffering from musical hallucinations. Nuklearmedizin 32:159–163

    PubMed  CAS  Google Scholar 

  45. Cleghorn JM, Franco S, Szechtman B et al. (1992) Toward a brain map of auditory hallucinations. Am J Psychiatry 149:1062–1069

    PubMed  CAS  Google Scholar 

  46. Walter H, Podreka I, Steiner M et al. (1990) A contribution to classification of hallucinations. Psychopathology 23:97–105

    Article  PubMed  CAS  Google Scholar 

  47. Robinson RG, Kubos KL, Starr LB (1984) Mood disorders in stroke patients: importance of localization of lesion. Brain 107:81–93

    Article  PubMed  Google Scholar 

  48. Starkstein SE, Robinson RG, Price TR (1987) Comparison of cortical and subcortical lesions in the production of poststroke mood disorders. Brain 110:1045–1059

    Article  PubMed  Google Scholar 

  49. Cummings JL (1992) Depression and Parkinson’s disease: a review. Am J Psychiatry 149:443– 454

    PubMed  CAS  Google Scholar 

  50. Wertmann E, Speedie L, Shemesh Z (1993) Cognitive disturbances in parkinsonian patients. Neuropsychiatr Neuropsychol Behav Neurol 6:31–37

    Google Scholar 

  51. Honer WG, Hurwitz T, Li DKB (1987) Temporal lobe involvement in multiple sclerosis patients with psychiatric disorders. Arch Neurol 44:187–190

    PubMed  CAS  Google Scholar 

  52. Joffe RT, Lippert GP, Gray TA (1987) Mood disorders and multiple sclerosis. Arch Neurol 44:376– 378

    PubMed  CAS  Google Scholar 

  53. Schiffer RB, Wineman MN, Weitkamp LR (1986) Association between bipolar affective disorders and multiple sclerosis. Am J Psychiatry 143:94–95

    Google Scholar 

  54. Mendez MF, Cummings JL, Benson DF (1984) Depression in epilepsy: significance and phenomenology. Arch Neurol 43:766–770

    Google Scholar 

  55. Devous MDS, Gullion CM, Grannemann BD, Trivedi MH, Rush AJ (1993) Regional cerebral blood flow alterations in unipolar depression. Psychiatry Res 50:233–256

    Article  PubMed  Google Scholar 

  56. Dolan RJ, Bench CJ, Liddle PF, Friston KJ, Frith CD, Grasby PM, Frackowiak RS (1993) Dorsolateral prefrontal cortex dysfunction in the major psychoses; symptom or disease specificity?. J Neurol Neurosurg Psychiatry 56:1290–1294

    Article  PubMed  CAS  Google Scholar 

  57. Goodwin GM, Austin MP, Dougall N et al. (1993) State changes in brain activity shown by the uptake of 99mTc-exametazime with single photon emission tomography in major depression before and after treatment. J Affect Disord 29:243–253

    Article  PubMed  CAS  Google Scholar 

  58. Grasso MG, Pantano P, Ricci M et al. (1994) Mesial temporal cortex hypoperfusion is associated with depression in subcortical stroke. Stroke 25:980–985

    Article  PubMed  CAS  Google Scholar 

  59. Grünwald F, Horn R, Rieker O, Klemm E, Menzel C, Moller HJ, Biersack HJ (1993) HMPAO- SPECT bei Demenz vom Alzheimer-Typ und Major Depression mit mnestischen Störungen. Nuklearmedizin 32:128–133

    PubMed  Google Scholar 

  60. Mayberg HS, Lewis PJ, Regenold W, Wagner HNJ (1994) Paralimbic hypoperfusion in unipolar depression. J Nucl Med 35:929–934

    PubMed  CAS  Google Scholar 

  61. Wu JC, Gillin JC, Buchsbaum MS, Hershey T, Johnson JC, Bunney WEJ (1992) Effect of sleep deprivation on brain metabolism of depressed patients. Am J Psychiatry 149:538–543

    PubMed  CAS  Google Scholar 

  62. Ebert D, Feistel H, Barocka A (1991) Effects of sleep deprivation on the limbic system and the frontal lobes in affective disorders: a study with Tc-99m-HMPAO SPECT. Psychiatry Res 40:247– 251

    Article  PubMed  CAS  Google Scholar 

  63. Ebert D, Feistel H, Barocka A, Kaschka W (1994) Increased limbic blood flow and total sleep deprivation in major depression with melancholia. Psychiatry Res Neuroimaging 55:101– 109

    Article  CAS  Google Scholar 

  64. Volk S, Kaendler SH, Weber R et al. (1992) Evaluation of the effects of total sleep deprivation on cerebral blood flow using single photon emission computerized tomography. Acta Psychiatr Scand 86:478–483

    Article  PubMed  CAS  Google Scholar 

  65. Reiman EM, Raichle ME, Robins E et al. (1989) Neuroanatomical correlates of a lactate-induced anxiety attack. Arch Gen Psychiatry 46:493–500

    PubMed  CAS  Google Scholar 

  66. Reiman EM, Fusselman MJ, Fox PT, Raichle ME (1989) Neuroanatomical correlates of anticipatory anxiety. Science 243:1071–1074

    Article  PubMed  CAS  Google Scholar 

  67. Fredrikson M, Wik G, Greitz T, Eriksson L, Stone Elander S, Ericson K, Sedvall G (1993) Regional cerebral blood flow during experimental phobic fear. Psychophysiology 30:126–130

    Article  PubMed  CAS  Google Scholar 

  68. Wik G, Fredrikson M, Ericson K, Eriksson L, Stone Elander S, Greitz T (1993) A functional cerebral response to frightening visual stimulation. Psychiatry Res 50:15–24

    Article  PubMed  CAS  Google Scholar 

  69. Woods SW, Koster K, Krystal JK (1988) Yohimbine alters regional cerebral blood flow in panic disorder. Lancet 11:678

    Article  Google Scholar 

  70. De Cristofaro MT, Sessarego A, Pupi A, Biondi F, Faravelli C (1993) Brain perfusion abnormalities in drug-naive, lactate-sensitive panic patients: a SPECT study. Biol Psychiatry 33:505–512

    Article  PubMed  Google Scholar 

  71. Wiesel FA (1992) Glucose metabolism in psychiatric disorders: how can we facilitate comparisons among studies?. J Neural Transm [Suppl] 37:1–18

    CAS  Google Scholar 

  72. Gottschalk LA, Buchsbaum MS, Gillin JC, Wu J, Reynolds CA, Herrera DB (1992) The effect of anxiety and hostility in silent mentation on localized cerebral glucose metabolism. Compr Psychiatry 33:52–59

    Article  PubMed  CAS  Google Scholar 

  73. Mountz JM, Modell JG, Wilson MW, Curtis GC, Lee MA, Schmaltz S, Kühl DE (1989) Positron emission tomographic evaluation of cerebral blood flow during state anxiety in simple phobia. Arch Gen Psychiatry 46:501–504

    PubMed  CAS  Google Scholar 

  74. Feistel H, Kaschka WP, Ebert D, Joraschky P, Wolf F (1993) Assessment of cerebral benzodiazepin receptor distribution in anxiety disorders - a study with I-123-Iomazenil. J Nucl Med 34/5:47 (Abstract)

    Google Scholar 

  75. Schlegel R, Steinert H, Bockisch A, Hahn K, Schloesser R, Benkert O (1994) Decreased benzodiazepin receptor binding in panic disorder measured by Iomazenil-SPECT. Eur Arch Psychiatry Clin Neurosci 244:49–51

    Article  PubMed  CAS  Google Scholar 

  76. George MS, Trimble MR, Costa DC, Robertson MM, Ring HA, Ell PJ (1992) Elevated frontal cerebral blood flow in Gilles de la Tourette syndrome. A 99Tcm-HMPAO SPECT study. Psychiatry Res 45:143–151

    Article  PubMed  CAS  Google Scholar 

  77. Baxter LR Jr, Schwartz JM, Bergman KS et al. (1992) Caudate glucose metabolic rate changes with both drug and behavior therapy for obsessive-compulsive disorder. Arch Gen Psychiatry 49:681–689

    Google Scholar 

  78. Baxter LRJ, Schwartz JM, Mazziotta JC, Phelps ME, Pähl JJ, Guze BH, Fairbanks L (1988) Cerebral glucose metabolic rates in nondepressed patients with obsessive-compulsive disorder. Am J Psychiatry 145:1560–1563

    PubMed  Google Scholar 

  79. Horwitz B, Swedo SE, Grady CL, Pietrini P, Schapiro MB, Rapoport JL, Rapoport SI (1991) Cerebral metabolic pattern in obsessive-compulsive disorder: altered intercorrelations between regional rates of glucose utilization. Psychiatry Res 40:221–237

    Article  PubMed  CAS  Google Scholar 

  80. Insel TR (1992) Toward a neuroanatomy of obsessive-compulsive disorder. Arch Gen Psychiatry 49:739–744

    PubMed  CAS  Google Scholar 

  81. Swedo SE, Pietrini P, Leonard HL et al. (1992) cerebral glucose metabolism in childhood-onset obsessive-compulsive disorder. Revisualization during pharmacotherapy. Arch Gen Psychiatry 49:690–694

    PubMed  CAS  Google Scholar 

  82. Swedo SE, Schapiro MB, Grady CL et al. (1989) Cerebral glucose metabolism in childhood-onset obsessive-compulsive disorder. Arch Gen Psychiatry 46:518–523

    PubMed  CAS  Google Scholar 

  83. Rauch SL, Jenike MA, Alpert NM, Baer L, Breiter HC, Savage CR, Fischman AJ (1994) Regional cerebral blood flow measured during symptom provocation in obsessive-compulsive disorder using oxygen 15-labeled carbon dioxide and positron emission tomography. Arch Gen Psychiatry 51:62–70

    PubMed  CAS  Google Scholar 

  84. Krieg JC (1991) Eating disorders as assessed by cranial computerized tomography (CCT, dSPECT, PET). Adv Exp Med Biol 291:223–229

    PubMed  CAS  Google Scholar 

  85. Hagman JO, Buchsbaum MS, Wu JC, Rao SJ, Reynolds CA, Blinder BJ (1990) Comparison of regional brain metabolism in bulimia nervosa and affective disorder assessed with positron emission tomography. J Affect Disord 19:153–162

    Article  PubMed  CAS  Google Scholar 

  86. Wu JC, Hagman J, Buchsbaum MS et al. (1990) Greater left cerebral hemispheric metabolism in bulimia assessed by positron emission tomography. Am J Psychiatry 147:309–312

    PubMed  CAS  Google Scholar 

  87. Andreasen PJ, Altemus M, Zametkin AJ, King AC, Lucinio J, Cohen RM (1992) Regional cerebral glucose metabolism in bulimia nervosa. Am J Psychiatry 149:1506–1513

    Google Scholar 

  88. Hohagen F, Berger M (1989) Differentialdiagnose der Schlafstörungen. In: Hippius H, Lauter H, Greil W (Hrsg) Der gestörte Schlaf. MMV Medizin, München (Psychiatrie für die Praxis, Bd 19, S 19–32)

    Google Scholar 

  89. Townsend RE, Prinz PN, Obrist WD (1973) Human cerebral blood flow during sleep and waking. J Appl Physiol 35:620–625

    PubMed  CAS  Google Scholar 

  90. Meyer JS, Ishikawa Y, Hata T, Karacan I (1987) Cerebral blood flow in normal and abnormal sleep and dreaming. Brain Cogn 6:266–294

    Article  PubMed  CAS  Google Scholar 

  91. Sakai F, Meyer SJ, Karacan I, Derman S, Yamamoto M (1980) Normal human sleep: Regional Cerebral Hemodynamics. Ann Neurol 7:471–478

    Article  PubMed  CAS  Google Scholar 

  92. Kneisley LW, Giombetty RJ, Daly JA, Miller BL (1993) Abnormal waking cerebral blood flow in sleep apnea syndrome. In: Togawa K, Katayama S, Hishikawa Y, Ohta Y, Horie T (eds) Sleep apnea and rhonchpathy. Karger, Basel, pp 135–139

    Google Scholar 

  93. Feistel H, Merkl M, Siegfried W et al. (1994) Brain perfusion during sleep apnea - a study with Tc- 99m-HMPAO in sleep laboratory. J Nucl Med 28:770 (Abstract)

    Google Scholar 

  94. Staedt J, Stoppe G, Kogler A, Münz D, Riemann H, Emrich D, Ruther E (1993) Dopamine D2 receptor alteration in patients with periodic movements in sleep (nocturnal myoclonus). J Neural Transm Gen Sect 93:71–74

    Article  PubMed  CAS  Google Scholar 

  95. Holman BL, Carvalho PA, Mendelson J et al. (1991) Perfusion scan is abnormal in cocaine - dependent polydrug users: a study using Technetium-99m-HMPAO and SPECT. J Nucl Med 32:1206–1210

    PubMed  CAS  Google Scholar 

  96. Tumeh SS, Nagel JS, English RJ (1991) Use of SPECT perfusion brain scintigraphy to investigate effects of cocain in the brain. In: Nahas GG, Latur C (eds) Physiopatholgy of illicit drugs: Cannabis, cocain, opiates. Pergamon, Oxford, pp 143–150

    Google Scholar 

  97. London ED, Cascella NG, Wong DF (1990) Cocaine-induced reduction of glucose utilisation in human brain. A study using positron emission tomography and [fluorine-18]-fluo- rodeoxyglucose. Arch Gen Psychiatry 47:567–574

    PubMed  CAS  Google Scholar 

  98. Volkow ND, Hitzemann R, Wolf AP et al. (1990) Acute effects of ethanol on regional brain glucose metabolism and transport. Psychiatry Res 35:39–48

    Article  PubMed  CAS  Google Scholar 

  99. Volkow ND, Mullani N, Gould KL, Adler S, Krajewski K (1988) Cerebral blood flow in chronic cocaine users: a study with positron emission tomography. Br J Psychiatry 152:641–648

    Article  PubMed  CAS  Google Scholar 

  100. Holman BL, Garada B, Johnson KA et al. (1992) A comparison of brain perfusion SPECT in cocaine abuse and AIDS dementia complex. J Nucl Med 33:1312–1315

    PubMed  CAS  Google Scholar 

  101. Volkow ND, Fowler JS, Wolf AP et al. (1991) Changes in brain glucose metabolism in cocaine dependence and withdrawal. Am J Psychiatry 148:621–626

    PubMed  CAS  Google Scholar 

  102. Wik G, Borg S, Sjogren I et al. (1988) PET determination of regional cerebral glucose metabolism in alcohol-dependent men and healthy controls using llC-glucose. Acta Psychiatr Scand 78:234–241

    Article  PubMed  CAS  Google Scholar 

  103. Litton JE, Neiman J, Pauli S, Farde L, Hindmarsh T, Halldin C, Sedvall G (1993) PET analysis of [llC]flumazenil binding to benzodiazepine receptors in chronic alcohol-dependent men and healthy controls. Psychiatry Res 50:1–13

    Article  PubMed  CAS  Google Scholar 

  104. Volkow ND, Wang GJ, Hitzemann R et al. (1993) Decreased cerebral response to inhibitory neurotransmission in alcoholics. Am J Psychiatry 150:417–422

    PubMed  CAS  Google Scholar 

  105. Deisenhammer E, Reisecker F, Leblhuber F, Holl K, Markut H, Trenkler J, Schneider I (1989) Single-photon emission-computed tomography in the differential diagnosis of dementia. Dtsch Med Wochenschr 114:1639–1644

    Article  PubMed  CAS  Google Scholar 

  106. Caspari D, Trabert W, Heinz G, Lion N, Henkes H, Huber G (1993) The pattern of regional cerebral blood flow during alcohol withdrawal - a single photon emission tomography study with 99mTc- HMPAO. Acta Psychiatr Scand 87:414–417

    Article  PubMed  CAS  Google Scholar 

  107. Bonte FJ, Horn J, Tintner R, Weiner MF (1990) Single photon tomography in Alzheimer’s disease and the dementias. Semin Nucl Med 20:342–352

    Article  PubMed  CAS  Google Scholar 

  108. Costa DC, Ell PJ, Burns A, Philpot M, Levy R (1988) CBF tomograms with 99mTc-HM-PAO in patients with dementia (Alzheimer type and HIV) and Parkinson’s disease - initial results. J Cereb Blood Flow Metab 8:S109–S115

    Article  PubMed  CAS  Google Scholar 

  109. Holman BL, Nagel JS, Johnson KA, Hill TC (1991) Imaging dementia with SPECT. Ann NY Acad Sci 620:165–174

    Article  PubMed  CAS  Google Scholar 

  110. Launes J, Sulkava R, Erkinjuntti T, Nikkinen P, Lindroth L, Liewendahl K, Iivanainen M (1991) 99Tcm-HMPAO SPECT in suspected dementia. Nucl Med Commun 12:757–765

    Article  PubMed  CAS  Google Scholar 

  111. Testa HJ, Snowden JS, Neary D et al. (1988) The use of [99mTc]-HM-PAO in the diagnosis of primary degenerative dementia. J Cereb Blood Flow Metab 8:S123-S126

    Article  PubMed  CAS  Google Scholar 

  112. Szymanski HV, Linn R (1992) A review of the postconcussion syndrome. Int J Psychiatry Med 22:357–375

    PubMed  CAS  Google Scholar 

  113. Alavi A (1989) Functional and anatomic studies of head injury. J Neuropsychiatry 1:45–50

    Google Scholar 

  114. Gray BG, Ichise M, Chung DG (1994) Technetium-99m-HMPAO SPECT in the evaluation of patients with a remote history of traumatic brain injury: a comparison with X-ray computed tomography. J Nucl Med 33:52–58

    Google Scholar 

  115. Bonne O, Krausz Y, Lerer B (1992) SPECT imaging in psychiatry. A review. Gen Hosp Psychiatry 14:296–306

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Feistel, H. (1995). SPECT bei psychiatrischen Erkrankungen. In: Wieler, H.J. (eds) Single-Photon-Emissions-Computertomographie (SPECT) des Gehirns. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79222-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79222-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79223-6

  • Online ISBN: 978-3-642-79222-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics