Studies on Persistence and Enhancement of Targeted Gene Expression

  • George Y. Wu
Conference paper
Part of the NATO ASI Series book series (volume 88)


Intravenous injection of DNA-protein complexes into rats has been shown by us previously to result in transient recombinant gene expression in liver, lasting 4–5 days. The eventual deterioration of gene expression is due in part to instability of the targeted DNA. However, we noted retention of transgene sequences in liver and persistent recombinant gene expression, lasting 2–4 months, when the animals were subjected to partial hepatectomy immediately following in vivo gene transfer. Therefore, in an attempt to determine the mechanism(s) responsible for persistent gene expression following partial hepatectomy, we characterized the molecular state of the retained, liver-associated transgenes.


Partial Hepatectomy Tumor Vaccine Modify Tumor Cell Recombinant Gene Expression Adequate Immune Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cloudman, A.M.: The effect of an extra-chromosomal influence upon transplanted spontaneous tumors in mice (1941). Science 93: 380–381.PubMedCrossRefGoogle Scholar
  2. Cotten, M., Wagner, E, Zatloukal, K., Phillips, S., Curiel, D.T., and Birnstiel, M.L. (1992). High efficiency receptor-mediated delivery of small and large (48 kb) gene constructs using the endosome disruption activity of defective or chemically-inactivated adenovirus particles. Proc. Natl. Acad. Sci. USA 89:6094–6098.PubMedCrossRefGoogle Scholar
  3. Curiel, D.T., Wagner, E., Cotten, M., Birnstiel, M.L., Agarwal, S., Li, C–M., Loechel, S., and Hu, P.C. (1992). High-efficiency gene transfer mediated by adenovirus coupled to DNA-polylysine complexes. Hum. Gene. Ther. 3: 147–154.PubMedCrossRefGoogle Scholar
  4. Fearon, E.R., Pardoll, D.M., Itaya, T., Golumbek, P., Levitsky, H.I., Simons, J.W., Karasuyama, H., Vogelstein, B., and Frost, P. (1990). Interleukin-2 production by tumor cells bypasses T helper function in the generation of an antitumor response. Cell 60: 397–403.PubMedCrossRefGoogle Scholar
  5. Gaugler, B., Van den Eynde, B., van der Bruggen, P., Romero, P., Gaforio, J.J., De Plaen, E., Lethe, B., Brasseur, F., and Boon, T. (1994). Human Gene MAGE-3 Codes for an Antigen Recognized on a Melanoma by Autologous Cytolytic T Lymphocytes. J. Exp. Med. 179: 921–930.PubMedCrossRefGoogle Scholar
  6. Groen, T.P. (1987): Tumor-associated antigens (TAA). In: den Otter, W., and Ruitenberg, E.J. (Eds.), Tumor Immunology. Elsevier, Amsterdam, 1987, pp. 13–28.Google Scholar
  7. Herin, M., Lemoine, C, Weynants, P., Vessiere, A, Van Pel, A, Knuth, A, Devos, R., and Boon, T., (1987). Production of stable cytolytic T-cell clones directed against autologous human melanoma. Int. J. Cancer. 39: 390.PubMedCrossRefGoogle Scholar
  8. Lurquin, C, Van Pel, A, Madame, B., De Plaen, E.D., Szikora, J.-P., Janssens G, Reddehase, M.J., Lejeune, J., and Boon, T. (1987). Structure of the gene of Turn-transplantation antigen P91A: the mutated exon encodes a peptide recognition with Ld by cytolytic T cells. Cell 58: 293–303.CrossRefGoogle Scholar
  9. Topalian, S.L., Solomon, D., and Rosenberg, S.A. (1989). Tumor-specific cytolysis by lymphocytes infiltrating human melanomas. J. Immunol. 142: 3714–3725.PubMedGoogle Scholar
  10. Wagner, E, Zatloukal, K., Cotten, M., Kirlappos, H., Mechtler, K., Curiel, D.T., and Birnstiel, M.L. (1992). Coupling of adenovirus to polylysine-DNA complexes greatly enhances receptor-mediated gene delivery and expression of transfected genes. Proc. Natl Acad. Sci. USA 89: 6099–6103.PubMedCrossRefGoogle Scholar
  11. Van der Bruggen, P., and Van den Eynde, B. (1992). Molecular definition of tumor antigens recognized by T lymphocytes. Curr. Opin. Immuno. 4: 608–612.CrossRefGoogle Scholar
  12. Zatloukal, K., Wagner, E., Cotten, M., Phillips, S., Plank, G, Steinlein, P., Curiel, D.T., and Birnstiel, M.L. (1992). Transferrinfection: a highly efficient way to express gene constructs in eukaryotic cells. Ann. N. Y. Acad. Sci. 660: 136–153.PubMedCrossRefGoogle Scholar
  13. Zatloukal, K., Schmidt, W., Cotten, M., Wagner, E., Stingl, G., and Birnstiel, M.L. (1993). Somatic gene therapy for cancer: the utility of transferrinfection in generating “tumor vaccines”. Gene 135: 199–207.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • George Y. Wu
    • 1
  1. 1.Department of Medicine, Division of Gastroenterology-HepatologyUniversity of Connecticut School of MedicineFarmingtonUSA

Personalised recommendations