Transcriptional involvement of the Hepatitis B Virus Protein in Cellular Transduction Systems. Protein-Protein Interactions with Bzip transactivators

  • Ourania M. Andrisani
Conference paper
Part of the NATO ASI Series book series (volume 88)

Abstract

The Hepatitis B virus genome is 3.2 Kb and contains fourrecognized open reading frames, three of which encode virion structural proteins, Tiollais et al. (1985). These include the S gene (surface antigen), the C-gene (core antigen) and the viral polymerase. The fourth open reading frame, which is conserved among all mammalian hepadnaviruses, encodes a 16.5 KDa protein, termed X antigen. The X gene product is expressed during viral infection, producing a 1Kb mRNA, Tiollais et al. (1985). Direct evidence for the ability of the X gene to encode a protein has been obtained by its expression in both prokaryotic, Moriarty et al. (1985) and eukaryotic systems, Kay et al. (1985). The importance of the X gene product in viral infection has been demonstrated by frameshift X mutants of ground squirrel hepatitis virus, which failed to grow in animal hosts, Siddiqui et al. (1987). Recent evidence obtained from transgenic animal experiments supports the role of the HBV X gene product in the development of hepatocellular carcinomas, Kim et al. (1991), although its mechanism is currently unknown.

Keywords

Hepatitis Serine Lysine Glutamine Fructose 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrisani, O.M and Dixon, J.E. (1991) Involvement of lysine residues 289 and 291 of the cAMP-responsive element-binding protein in the recognition of the cAMP-responsive element. J. Biol. Chem. 266: 21444–21450.PubMedGoogle Scholar
  2. Andrisani, O.M., Hayes, T.E., Roos, B., and Dixon, J.E. (1987) Identification of the promoter sequences involved in the cell specific expression of the rat somatostatin gene. Nuc. Acids Res. 15: 5715–5728.CrossRefGoogle Scholar
  3. Andrisani, O.M., Pot, D.A., Zhu, Z. and Dixon, J.E. (1988) Three sequence-specific DNA-protein complexes are formed with the same promoter element essential for the expression of the rat somatostatin gene. Mol. Cell. Biol. 8:1947–1956.Google Scholar
  4. Andrisani, O.M., Zhu, Z., Pot, D.A. and Dixon, IE. (1989) In vitro transcription directed from the somatostatin promoter is dependent upon a purified 43 kDa DNA-binding protein. Proc. Natl. Acad. Sci. U.S.A. 86:2181–2185.PubMedCrossRefGoogle Scholar
  5. Ben-Levy, R., Faktor, O., Berger, I. and Shaul, Y. (1989) Cellular factors that interact with the hepatitis B virus enhancer. Mol. Cell. Biol. 9:1804–1809.Google Scholar
  6. Berkowitz, L.A. and Gilman, M.Z. (1990) Two distinct forms of active transcription factor CREB (cAMP response element binding protein). Proc. Natl. Acad. Sci. USA 87:5258–5262.PubMedCrossRefGoogle Scholar
  7. Coding, CR. and O’Hare, P. (1991) Herpes simplex virus VMW 65-octamer binding protein interaction. A paradigm for combinational control of transcription. Virology, 173:363–367.CrossRefGoogle Scholar
  8. Colgrove, R., Simon, G. and Ganem, D. (1989) Transcriptional activation of homologous and heterologous genes by hepatitis B virus X gene product in cells permissive for viral replication. J. Virol, 63: 4019–4026.PubMedGoogle Scholar
  9. Dwarki, V.J., Montminy, M. and Verma, I.M. (1990) Both the basic region and the leucine zipper domain of CREB protein are essential for transcriptional activation. The EMBO J. 9:225–232.Google Scholar
  10. El-Maghrabi, M.R., Lange, A., Kümmel, L., Pilkis, S.J. (1991) The rat fructose-l,6-biphosphatase gene: structure and regulation of expression. J. Biol. Chem. 266:2115–2120.PubMedGoogle Scholar
  11. Flint, J. and Shenk T. (1989) Adenovirus E1A protein paradigm viral transactivator. Ann. Rev. Genetics 23:141–161.CrossRefGoogle Scholar
  12. Foulkes, N.S., Borelli, E. and Sassone-Corsi, P. (1991) CREM gene: Use of alternative DNA-binding domains generates multiple antagonists of cAMP-induced transcription. Cell 64:739–749.PubMedCrossRefGoogle Scholar
  13. Gonzales, G.A. and Montminy, M.R. (1990) cAMP stimulates gene transcription by phosphorylation of CREB at serine 133. Cell 59:675–680.CrossRefGoogle Scholar
  14. Gonzales, G.A., Yamamoto, K.K., Fischer, W.H., Karr, D., Menzel, P. (1989) A cluster of phosphorylation sites on the cAMP-regulated nuclear factor CREB, predicted by its sequence. Nature 337:749–752.CrossRefGoogle Scholar
  15. Hai, T., Liu, F., Coukos, W.J. and Green, M.R. (1989) Transcription factor ATF cDNA clones: an extensive family of leucine zipper proteins able to selectively form DNA-binding heterodimers. Genes and Dev. 3:2083–2090.PubMedCrossRefGoogle Scholar
  16. Hoeffler, J.P. Meyer, T.E., Yun, Y., Jameson, L.J. and Habener, J.F. (1988) Cyclic AMP-responsive DNA-binding protein: structure based on a cloned placental cDNA. Science 242: 1430–1433.PubMedCrossRefGoogle Scholar
  17. Hope, I.A. and Struhl, K. (1986) Functional dissection of a eukaryotic transcriptional activator protein, GCN4 of yeast. Cell 46:885–894.PubMedCrossRefGoogle Scholar
  18. Hurst, H. and Jones, N.C. (1987) Identification of factors that interact with the ElA-inducible adenovirus E3 promoter. Genes and Dev. 1: 1132–1146.PubMedCrossRefGoogle Scholar
  19. Jameel, S., Siddiqui, A., Maguire, H. and Rao, K. (1990) Hepatitis B virus X protein produced in E. coli is biologically functional. J. Virol. 64: 3963–3966.PubMedGoogle Scholar
  20. Kay, A, Mandart, E., Trepo, C. and Galibert, F. (1985) The HBV HBX gene expressed in E. coli is recognized by sera from hepatitis patients. EMBO J. 4: 1287–1292.PubMedGoogle Scholar
  21. Kim, G, Koike, K., Saito, Il, Miyarmura, T., Jay, G. (1991) HBVX gene of hepatitis B virus induces liver cancer in transgenic mice. Nature 351: 317–351.PubMedCrossRefGoogle Scholar
  22. Lamph, W.W., Wamsley, P., Sassone-Corsi, P. and Verma, I. (1988) Induction of proto-oncogene Jun/Ap-1 by serum and TP A. Nature 334: 629–631.PubMedCrossRefGoogle Scholar
  23. Landschulz, W.H., Johnson, P.F. and McKnight, S.L. (1988) The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240: 1759–1764.PubMedCrossRefGoogle Scholar
  24. Maguire, H.F., Hoeffler, J.P. and Siddiqui, A. (1991) HBV X protein alters the DNA binding specificity of CREB and ATF-2 by protein-protein interactions. Science 252: 842–844.PubMedCrossRefGoogle Scholar
  25. Montminy, M.R., and Bilezikjian, L.M. (1987) Binding of a nuclear protein to the cAMP response element of the somatostatin gene. Nature 328: 175–178.PubMedCrossRefGoogle Scholar
  26. Montminy, M.R., Sevarino, K.A., Wagner, J.A., Mandel, G., Goodman, R.H. (1986) Identification of a cyclic AMP responsive element within the rat somatostatin gene. Proc. Natl. Acad. Sci. USA 83: 6682–6686.PubMedCrossRefGoogle Scholar
  27. Moriarty, A.M., Alexander, H., Lerner, R.A., and Thornton, G.B. (1985) Antibodies to peptides detect new hepatitis B antigen: serological correlation with hepatocellular carcinoma. Science 227: 429–432.PubMedCrossRefGoogle Scholar
  28. Neuberg, M., Schuermann, M., Hunter, J.B. and Muller, R. (1989) A Fos protein containing the Jun leucine zipper forms a homodimer which binds to the AP-1 binding site. Nature 338: 589–590.PubMedCrossRefGoogle Scholar
  29. Nigg, E.A. (1990) Mechanisms of signal transduction to the cell nucleus. Adv. in Cancer Res. 55: 271–300.CrossRefGoogle Scholar
  30. Patel, L., Abate, C. and Curran, T. (1990) Altered protein conformation on DNA binding by fos and jun. Nature 347: 572–575.PubMedCrossRefGoogle Scholar
  31. Pilkis, S.J. and Granner, D.K. (1992) Molecular physiology of the regulation of hepatic gluconeogenesis and glycolsis. Ann. Rev. Phys. 54:885–909.CrossRefGoogle Scholar
  32. Quinn, P., Wong, T.W., Magnuson, M.A., Shabb, J.B. and Granner, D.K. (1988) Identification of the basal and cAMP regulation elements in the promoter of the PEPCK gene. Mol. Cell Biol. 8: 3467–3475.Google Scholar
  33. Rauscher, F.J., III, Sambucette, L.C., Curran, T., Distel, R.J.and Spiegelman, B.M. (1988) Common DNA binding site for Fos-protein complexes and transcription factor AP-1. Cell 52: 471–480.PubMedCrossRefGoogle Scholar
  34. Ryder, K., Lau, L.F. and Nathans, D. (1988) A gene activated by growth factors is related to the oncogene V-jun. Proc. Natl. Acad. Sci. USA 85: 1487–1491.PubMedCrossRefGoogle Scholar
  35. Ryseck, R.P., Hirai, S.I., Yaniv, M. and Bravo, R. (1988) Transcriptional activation of c-jun during the G0/G1 transition in mouse fibroblasts. Nature 334: 535–537.PubMedCrossRefGoogle Scholar
  36. Santiago-Rivera, Z.I., Williams, J.S., Gorenstein, D.G. and Andrisani, O.M. (1993) Bacterial expression and characterization of the CREB bZip module: Circular dichroism and 2D XH-NMR studies. Prot. Science 2: 1461–1471.CrossRefGoogle Scholar
  37. Sassone-Corsi, P., Visvader, J., Ferland, L., Mellon, P. and Verma, I.M. (1988) Induction of proto-oncogene fos transcription throught the adenylate cyclase pathway: Characterization of a cAMP-responsive element. Genes and Dev. 2:1529–1538.PubMedCrossRefGoogle Scholar
  38. Seto, E., Mitchell, P.J. and Yen, T.S.B. (1990) Transactivation by the hepatitis B virus X protein depends on AP-2 and other transcription factors. Nature 344: 72–74.PubMedCrossRefGoogle Scholar
  39. Seto, E., Yen, T., Peterlin, B. and Ou, J. (1988) Transactivation of the human immunodeficiency virus long terminal repeat by the hepatitis B virus X protein. Proc. Natl. Acad. Sci., USA, 85: 8286–8290.PubMedCrossRefGoogle Scholar
  40. Siddiqui, A., Gaynor, R., Srinivasan, A., Mapoles, J. and Farr, R.W. (1989) Transactivation of viral enhancers including long terminal repeat of the human immunodeficiency virus by the hepatitis B virus X rotein. Virology, 169: 479–484.PubMedCrossRefGoogle Scholar
  41. Siddiqui, A., Jameel, S. and Mapoles, J. (1987) Expression of the hepatitis B virus X gene in mammalian cells. Proc. Natl. Acad. Sci. USA, 84: 2513–2517.PubMedCrossRefGoogle Scholar
  42. Spandau, D. and Lee, C.H. (1988) Transactivation of viral enhancers by the hepatitis B virus X protein. J. Virol, 62: 427–434.PubMedGoogle Scholar
  43. Studier, F.W. and Moffatt, B.A. (1986) Use of bacteriophage T7 RNA polymerase to direct the expression of cloned genes. J. Mol. Biol. 189: 113–130.PubMedCrossRefGoogle Scholar
  44. Tabor, S. and Richardson, C.C. (1985) A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc. Natl. Acad. Sci. USA 82: 1074–1078.PubMedCrossRefGoogle Scholar
  45. Tiollais, P., Pourcell, C. and Dejean, A. (1985) The Hepatitis B virus. Nature 317: 489–495.PubMedCrossRefGoogle Scholar
  46. Turner, R. and Tjian, R. (1989) Leucine repeats and adjacent DNA binding domain mediate the formation of functional c-fos/c-jun heterodimers. Science 243: 1689–1694.PubMedCrossRefGoogle Scholar
  47. Twu, J.S. and Schlomer, R.H. (1987) Transcriptional transactivating function of hepatitis virus. J. Virol., 61: 3448–3453.PubMedGoogle Scholar
  48. Twu, J.S. and Robinson (1989) Hepatitis B virus X gene can transactivate heterologous viral sequences. Proc. Natl. Acad. Sci., USA, 86: 2046–2050.PubMedCrossRefGoogle Scholar
  49. Twu, J.S., Chu, K. and Robinson, W. (1989) Hepatitis B virus X gene activates NFB-like enhancer sequences in the long terminal repeat of human immunodeficiency virus 1. Proc. Natl. Acad. Sci., USA, 86: 5168–5172.PubMedCrossRefGoogle Scholar
  50. Unger, T. and Shaul, Y. (1990) The X protein of the hepatitis B virus acts as a transcription factor when targeted to its responsive element. EMBO J. 9:1889–1995.PubMedGoogle Scholar
  51. Vogt P.K. and Bos T.J. (1990) Jun: oncogene and transcription factor. Adv. in Cancer Res. 55: 1–31.CrossRefGoogle Scholar
  52. Williams, J.S., Dixon, J.E. and Andrisani, O.M. (1993) Binding constant determination studies utilizing recombinant ACREB protein. DNA and Cell Biology 12: 183–190.PubMedCrossRefGoogle Scholar
  53. Wu, J.Y., Zhou, Z., Judd, A., Cartwright, C. and Robinson, W. (1990) The hepatitis B virus-encoded transcriptional trans-activator hbx appears to be a novel serine/threonine kinase. Cell 63, 687–695.PubMedCrossRefGoogle Scholar
  54. Yamamoto, K.K., Gonzalez, G.A., Menzel, P., Rivier, J. and Montminy, M.R. (1990) Characterization of a bipartite activator domain in transcription factor CREB. Cell 3, 611–617.CrossRefGoogle Scholar
  55. Zhu, Z., Andrisani, O.M., Pot, D.A. and Dixon, J.E. (1989) Purification and characterization of a 43 kDa transcription factor required for rat somatostatin gene expression. J. Biol. Chem. 264, 6550–6556.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Ourania M. Andrisani
    • 1
  1. 1.Dept. of Physiology and Pharmacology, School of Veterinary MedicinePurdue UniversityLafayetteUSA

Personalised recommendations