Advertisement

Liver γ-Glutamyl Transpeptidase Activity after Cyclosporine A and Amlodipine Treatment

  • Jerzy G. Maj
  • Jeremiasz J. Tomaszewski
  • Agnieszka E. Haratym
Conference paper
Part of the NATO ASI Series book series (volume 88)

Abstract

γ-Glutamyl transpeptidase (GGT) (E.C.2.3.2.2) is a cell — surface enzyme that catalyzes transfer of the γ-glutamyl moiety of glutathione and other γ- glutamyl compounds to a variety of amino acids and peptides. It has also been suggested that the action of GGT may be involved in protein synthesis, amino acid transport, collagen formation and degradation of peptides (Meister, 1974; Orlowski and Meister, 1970). The GGT, a heterogenous sialoglycoprotein is localized in many mammalian tissues and cells (Kottgen et al, 1976; Tate and Meister, 1976). The pattern of GGT sugar chains can alter during development and in pathological states (Kottgen et al, 1976; Yamashita et al., 1993). The GGT activity is different in individual organs, tissues and cells and is dependent on physiological or pathological states, drugs and many others (Chung et al, 1990; Nishimura and Teschke, 1983; Paolicchi et al., 1993; Stastny et al., 1992; Weber et al., 1992). The GGT is involved in γ-glutamyl cycle and more recent studies have suggested that the enzymes of the cycle participate in a variety of essential cellular reactions and defense mechanisms (Meister, 1974).

Keywords

Cyclosporine Metabolism AMLODIPINE Treatment Calcium Channel Blocker Amlodipine Cytosolic Binding Protein Mglkg Body Weight 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antoni, FA., Shipston, M.F., Smith, S.M. (1993). Inhibitory role for calcineurin in stimulus — secretion coupling revealed by FK506 and cyclosporin A in pituitary corticotrope tumor cells. Biochem. Biophys. Res. Commun. 194:226–233.PubMedCrossRefGoogle Scholar
  2. Broekemeier, K.M., Dempsey, M.E., Pfeffer, D.R. (1989). Cyclosporin A is a potent inhibitor of the inner membrane permeability transition in liver mitochondria. J. Biol. Chem. 264: 7826–7830.PubMedGoogle Scholar
  3. Carafoli, E. (1991). The calcium pumping ATPase of the plasma membrane. Ann. Rev. Physiol. 53: 531–547.CrossRefGoogle Scholar
  4. Chung, G.H., Lee, HJ., Yang, K.H. (1990). Regulation of the hydrolitic and transfer activities of gamma-glutamyl transpeptidase. Life Sci. 46: 1343–1348.PubMedCrossRefGoogle Scholar
  5. Cohen, G. (1983). The pathology of Parkinson;s disease: biochemical aspects of dopamine neuron senescence. J. Neural. Transm. [Suppl.] 19: 213–217.Google Scholar
  6. Colombani, P.M., Robb, A., Hess, A.D. (1985). Cyclosporine A binding to calmodulin: a possible role site of action on T lymphocytes. Science 228: 337–339.PubMedCrossRefGoogle Scholar
  7. Deleve L.D., Kaplowitz, N. (1990). Importance and regulation of hepatic glutathione. Semin. Liver Dis. 10: 251–266.CrossRefGoogle Scholar
  8. Fischer, G., Wittman-Liebold, B., Lang, K., Keifhaber, T., Schmid, F.X. (1989). Cyclophilin and peptidyl-prolyl cis-trans isomerase are probably identical proteins. Nature 337: 476–478.PubMedCrossRefGoogle Scholar
  9. Guengerich, F.P. (1992). Human cytochrome P-450 enzymes. Life Sci. 50: 1471–1478.PubMedCrossRefGoogle Scholar
  10. Handschumacher, R.E., Harding, M.W., Rice, J., Drugge, R.J., Speicher, D.W. (1984). Cyclophilin: A specific cytosolic binding protein for cyclosporin A. Science 226: 544–547.PubMedCrossRefGoogle Scholar
  11. Kahan, B.D. (1989). Cyclosporins N. Engl. J. Med. 321: 1725–1738.Google Scholar
  12. Koob, M., Dekant, W. (1991). Bioactivation of xenobiotics by formation of toxic glutathione conjugation. Chem. Biol. Interact. 77: 107–136.PubMedCrossRefGoogle Scholar
  13. Kottgen, E., Reutter, W., Gerok, W. (1976). Two different gamma-glutamyl-transferases during development of liver and small intestine: A fetal (sialo-) and an adult (asialo-) glycoprotein. Biochem. Biophys. Res. Commun. 72: 61–66.PubMedCrossRefGoogle Scholar
  14. Kroemer, H.K., Gautier, J-C, Beaune, P., Henderson, C., Wolf, CR. (1993). Identification of P450 enzymes involved in metabolism of verapamil in humans. Naunyn-Schmied. Arch. Pharmacol. 348: 332–337.CrossRefGoogle Scholar
  15. Kronbach, T., Fischer, V., Meyer, U.A. (1988). Ciclosporine metabolism in human liver: identification of cytochrome P450 III gene family as the major cyclosporine — metabolizing enzyme explains interactions of cyclosporine with other drugs. Clin. Pharmacol. Ther. 43: 630–635.PubMedCrossRefGoogle Scholar
  16. Lin, CS., Boltz, R.C, Siekierka, J.J, Sigal, N.H. (1991). FK-506 and cyclosporin A inhibit highly similar signal transduction pathways in human lymphocytes. Cell Immunol. 133: 269–284.PubMedCrossRefGoogle Scholar
  17. Lindholm, A, Henricssons, S. (1987). Verapamil inhibits cyclosporine metabolism. Lancet 1: 1262–1263.PubMedCrossRefGoogle Scholar
  18. Liu, J. (1993). FK506 and cyclosporin, molecular probes for studying intracellular signal transduction. Immunol. Today 14: 290–295.PubMedCrossRefGoogle Scholar
  19. Loterszatjn, S, Brechler, V, Pavoine, C., Dufour, M. (1990). The role of plasma membrane Ca2+ pumps as targets for hormonal action. In: Nahorsky S.R. (ed) Transmembrane signalling. Intracellular messengers and implications for drug development. John Wiley & Sons Ltd, New York. 141–156; 1990.Google Scholar
  20. Lowry, O.H, Rosebrough, N.J., Farr, A.L, Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275.PubMedGoogle Scholar
  21. McCabe, Jr. M.J, Nicotera, P, Orrenius, S. (1992). Calcium — dependent cell death. Role of the endonuclease, protein kinase C., and chromatin conformation. Ann. NY Acad. Sci. 663: 269–278.PubMedCrossRefGoogle Scholar
  22. Meister, A. (1974). Glutathione; Metabolism and function via the γ-glutamylGoogle Scholar
  23. Meister, A. (1974). Glutathione; Metabolism and function via the γ-glutamyl cycle. Life Sci. 663: 269–278.Google Scholar
  24. Nicchitta, C.V., Kamoun, M., Williamson, J.R. (1985). Cyclosporine augments receptor — mediated cellular Ca2+ fluxes in isolated hepatocytes. J. Biol. Chem. 260: 13613–13618.PubMedGoogle Scholar
  25. Niggli, E., Lederer, W.J. (1991). Molecular operations of the sodium — calcium exchanger revealed by conformation currents. Nature 349: 621–624.PubMedCrossRefGoogle Scholar
  26. Nishimura, M., Teschke, R. (1983). Alcohol and gamma-glutamyltransferase. Klin. Wochenschr. 61: 265–175.PubMedCrossRefGoogle Scholar
  27. Orlowski, M., Meister, A. (1970). The y-glutamyl cycle: a possible transport system for amino acids. Proc. Natl. Acad. Sci. USA 67: 1248–1255.PubMedCrossRefGoogle Scholar
  28. Paolicchi, A., Chieli, E., Rugin, E.S., Tongiani, R. (1993). Inducibility of gamma-glutamyltransferase by dexamethasone in rat liver: relationship with the cytochrome P-450 content. Life Sci. 52: 631–637.PubMedCrossRefGoogle Scholar
  29. Prueksaritanont, T., Correia, M.A., Rettie, A., Swinney, D.C., Thomas, P.E., Benet, L.Z. (1993). Cyclosporine metabolism by rat liver microsomes.Google Scholar
  30. Evidence for involvement of enzyme(s) other than cytochromes P-450 3 A. Drug Metab. Dispos. 21: 730–737.Google Scholar
  31. Putney, Jr. J.W. (1990). Receptor — regulated calcium entry. Pharmac. Ther. 48: 427–434.CrossRefGoogle Scholar
  32. Shi, M., Gozal, E., Choy, H.A., Forman, H.J. (1993). Extracellular glutathione and γ-glutamyl transpeptidase prevent H2O2-induced injury by 2,-dimethoxy-l,4-naphtoquinone. Free Radical Biol. Med. 15: 57–67.CrossRefGoogle Scholar
  33. Stastny, F., Pitha, J., Lisy, V., Hilgier, W., Kaucka, L, Albrecht, J. (1992). The effect of ammonia and pH on brain y-glutamyl transpeptidase in young rats. FEBS Lett 300: 247–250.PubMedCrossRefGoogle Scholar
  34. Takahashi, N., Hayano, T., Suzuki, M. (1989). Peptidyl-prolyl cis-trans isomerase is the cyclosporin A — binding protein cyclophilin. Nature 337: 473–475.PubMedCrossRefGoogle Scholar
  35. Tate, S.S. (1980). Enzymes of merkapturic acid formation. In: Jakoby W.B. (ed) Enzymatic basis of detoxication. Vol. II. Academic Press, New York, 95–120.Google Scholar
  36. Tate, S.S., Meister, A. (1976). Subunit structure and isozymic forms of γ-glutamyl transpeptidase. Proc. Natl. Acad. Sci. USA 73: 2599–2603.PubMedCrossRefGoogle Scholar
  37. Waldmann, T.A. (1993). The IL-2/IL-2 receptor system: a target for rational immune intervention. Immuno. Today 14: 264–269.CrossRefGoogle Scholar
  38. Weber, L.W.D., Lebowsky, M., Stahl, B.U., Kettrup, A., Rozman, K. (1992). Comparative toxicity of four chlorinated dibenzo-p-dioxins (CDDs) and their mixture. Arch. Toxicol. 66: 476–486.Google Scholar
  39. Yamashita, K., Hitoi, A., Taniguchi, N., Yokosawa, N., Tsukuda, Y., Kobata, A.(1993). Comparative study of the sugar chains of γ- glutamyltranspeptidases purified from rat liver and rat AH-66 hepatoma cells. Cancer Res. 43: 5059–5063.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Jerzy G. Maj
    • 1
  • Jeremiasz J. Tomaszewski
    • 1
  • Agnieszka E. Haratym
    • 1
  1. 1.Department of Clinical Biochemistry and Environmental ToxicologySchool of MedicineLublinPoland

Personalised recommendations