Skip to main content

Neue Entwicklungen in der Tumortherapie

  • Chapter
Kompendium Internistische Onkologie

Zusammenfassung

Die Rationale für dosiseskalierte Therapien bei soliden Tumoren begründet sich in der Annahme, daß eine Beziehung besteht zwischen der verabfolgten Dosis und dem Ausmaß der Tumorzellzerstörung und daß es daher möglich sein muß, eine Tumorzellpopulation durch entsprechende Erhöhung der Zytostatikadosierungen komplett zu zerstören. Nach Schätzungen von Frei et al. (1989) liegt die Tumorzellzahl bei einem Patienten mit klinisch evidenter, metastasierter Erkrankung bei ca. 1011 Zellen; ca. 1–0,1%, also 108–107 Zellen sind Tumorstammzellen. Unter der Annahme, daß eine konventionelle Chemotherapie in einer hypothetischen Situation in der Lage ist, eine gute partielle oder kurzanhaltende komplette Remission zu induzieren — entsprechend einer Tumorzellreduktion von ca. 1–2 log -, ist im idealen Fall eine Dosiseskalation um den Faktor 5–8 notwendig, um kurativ sein zu können. Diese Annahme hat allerdings nur Gültigkeit, wenn man davon ausgeht, daß für die verwendeten Substanzen eine log-lineare Dosis-Wirkungs-Beziehung über mehrere Zehnerpotenzen der Tumorzellreduktion vorliegt. Viele Substanzen, v. a. die Antimetaboliten und die Vincaalkaloide, weisen in experimentellen Systemen ein Plateau nach 1–2 log Tumorzellzerstörung auf und scheinen schon aufgrund dieser Charakteristika nicht besonders geeignet für Hochdosistherapien zu sein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Elias AD, Ayash L, Anderson KC et al. (1992) Mobilisation of peripheral blood progenitor alls by chemotherapy and granulocyte-macrophage colony stimulating factor for hematologic support after high close intensification for breast cancer. Blood 79:3036–3044

    PubMed  CAS  Google Scholar 

  • Frei E III, Antman K, Teicher B et al. (1989) Bone marrow autotransplantation for solid tumors — prospects. J Clin Oncol 7:515–526

    PubMed  Google Scholar 

  • Goldie JH, Coldman AJ (1979) A mathematical model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Tret Rep 63:1721–1733

    Google Scholar 

  • Hryniuk WA, Fitzgerald A, Goodyear M (1987) Applications of dose intensity to problems in chemotherapy of breast and colorectal cancer. Semin Oncol 14 [Suppl 4]:3–11

    PubMed  CAS  Google Scholar 

  • Hryniuk WM (1988) The importance of dose intensity in the outcome of chemotherapy. In: De Vita VT Jr, Hellman S, Rosenberg SA (eds) Important advances in oncology. Lippincott, Philadelphia, pp 121–141

    Google Scholar 

  • Norton L, Simon R (1977) Tumor size, sensitivity to therapy, and the design of treatment schedules. Cancer Treat Rep 61:1307–1317

    PubMed  CAS  Google Scholar 

  • Norton L, Simon R (1986) The Norton-Simon hypothesis revisited. Cancer Treat Rep 70:163–169

    PubMed  CAS  Google Scholar 

  • Schwartzberg L, Birch R, West W et al. (1993) Rapid and sustained hematopoietic reconstitution by peripheral blood stem all infusion alone following high dose chemotherapy. Bone Marron Transplant 11:369–374

    CAS  Google Scholar 

Literatur

  • Allegra CJ (1990) Antifolates. In: Chabner BA, Collins JM (eds) Cancer chemotherapy: Principles and practice. Lippincott, Philadelphia, pp 110–153

    Google Scholar 

  • Arceci RJ (1993) Clinical significance of P-glycoprotein in multidrug resistant malignancies. Blood 81:2215–2222

    PubMed  CAS  Google Scholar 

  • Aschele C, Sobrero A, Faderan MA, Bertino JR (1992) Novel mechanism(s) of resistance to 5-fluorouracil in human colon cancer (HCT-8) sublines following exposure to two different clinically relevant dose schedules. Cancer Res 52:1855–1864

    PubMed  CAS  Google Scholar 

  • Barranco SC, Townsend CM Jr, Weintraub B et al. (1990) Changes in glutathione content and resistance to anticancer agents in human stomach cancer cells induced by treatments with melphalan in vitro. Cancer Res 50:3614–3618

    PubMed  CAS  Google Scholar 

  • Beck WT (1989) Unknotting the complexities of multidrug resistance: the involvement of DNA topoisomerases in drug action and resistance. J Natl Cancer Inst 81:1683–1685

    PubMed  CAS  Google Scholar 

  • Beck WT, Danks MK (1991) Mechanisms of resistance to drugs that inhibit topoisomerases. Semin Cancer Biol 2:235–244

    PubMed  CAS  Google Scholar 

  • Berger SH, Jenh CH, Johnson LF, Berger FG (1985) Thymidylate synthase overproduction and gene amplification in fluorodeoxyuridine-resistant human cells. Mol Pharmacol 28:461–467

    PubMed  CAS  Google Scholar 

  • Biedler JL (1992) Genetic aspects of multidrug resistance. Cancer 70:1799–1809

    PubMed  CAS  Google Scholar 

  • Bleyer WA (1978) The clinical pharmacology of methotrexate. New applications of an old drug. Cancer 41:36–51

    PubMed  CAS  Google Scholar 

  • Brophy NA, Marie JP, Rojas VA, Warnke RA, McFall PJ, Smith SD, Sikic BI (1994) Mdrl gene expression in childhood acute lymphoblastic leukemias and lymphomas: a critical evaluation by four techniques. Leukemia 8:327–335

    PubMed  CAS  Google Scholar 

  • Calsou P, Salles B (1993) Role of DNA repair in the mechanisms of cell resistance to alkylating agents and cisplatin. Cancer Chemother Pharmacol 32:85–89

    PubMed  CAS  Google Scholar 

  • Carter G, Lemoine NR (1993) Antisense technology for cancer therapy: does it make sense? Br J Cancer 67:869–876

    PubMed  CAS  Google Scholar 

  • Chaudhary PM, Roninson IB (1991) Expression and activity of P-glycoprotein. A multidrug efflux pump, in human hematopoietic stem cells. Cell 66:85–94

    PubMed  CAS  Google Scholar 

  • Chen M, Beck WT (1993) Teniposide-resistant CEM cells, which express mutant DNA topoisomerase II a, when treated with noncomplex-stabilizing inhibitors of the enzyme, display no cross-resistance and reveal aberrant functions of the mutant enzyme. Cancer Res 53:5946–5953

    PubMed  CAS  Google Scholar 

  • Chin K-V, Pastan I, Gottesman MM (1993) Function and regulation of the human multidrug resistance gene. Adv Cancer Res 60:157–180

    PubMed  CAS  Google Scholar 

  • Chin K-V, Ueda K, Pastan I, Gottesman MM (1992) Modulation of acitivity of the promotor of the human MDR1 gene by ras and p53. Science 255:459–462

    PubMed  CAS  Google Scholar 

  • Cole SPC, Bhardwaj G, Gerlach JH et al. (1992) Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 258:1650–1654

    PubMed  CAS  Google Scholar 

  • Cummings J, Smyth JF (1993) DNA topoisomerase I and II as targets for rational design of new anticancer drugs. Ann Oncol 4:533–543

    PubMed  CAS  Google Scholar 

  • Danenberg PV, Lockshin A (1981) Fluorinated pyrimidines as tightbinding inhibitors of thymidylate synthetase. Pharmacol Ther [B] 13:69–90

    CAS  Google Scholar 

  • Frei E III, Holden SA, Gonin R, Waxman DJ, Teicher BA (1993) Antitumouralkylating agents: in vitro cross-resistance and collateral sensitivity studies. Cancer Chemother Pharmacol 33:113–122

    PubMed  CAS  Google Scholar 

  • Goldenberg GJ, Begleiter A (1979) Membrane transport of alkylating agents. Pharmacol Ther 8:237–274

    Google Scholar 

  • Gottesman MM (1993) How concer cells evade chemotherapy: Sixteenth Richard and Hinda Rosenthal Foundation Award Lecture. Cancer Res 53:747–754

    PubMed  CAS  Google Scholar 

  • Ho DHW, Frei E III (1971) Clinical pharmacology of 1-β-D-arabinofuranosyl-cytosine. Clin Pharmacol Ther 12:944–954

    PubMed  CAS  Google Scholar 

  • Kaye SB (1990) Reversal of multidrug resistance. Cancer Treat Rev 17 [Suppl A]:37–43

    PubMed  Google Scholar 

  • Kelley SL, Rozencweig M (1989) Resistance to platinum compounds: mechanisms and beyond. Eur J Cancer Clin Oncol 25:1135–1140

    PubMed  CAS  Google Scholar 

  • Kufe DW, Munroe D, Herrick D, Egan E, Spriggs D (1984) Effects of 1-β-D-arabinofuranosylcytosine incorporation on eukaryotic DNA template function. Mol Pharmacol 26:128–134

    PubMed  CAS  Google Scholar 

  • Li WW, Lin JT, Tong WP, Trippett TM, Brennan MF, Bertino JR (1992) Mechanisms of natural resistance to antifolates in human soft tissue sarcomas. Cancer Res 52:1434–1438

    PubMed  CAS  Google Scholar 

  • Ling V (1992) P-glycoprotein and resistance to anticancer drugs. Cancer 69:2603–2609

    PubMed  CAS  Google Scholar 

  • List AF (1995) Preclinical investigations of drug resistance. Curr Opin Oncol 7:19–27

    PubMed  CAS  Google Scholar 

  • Liu L, Wand JC (1991) Biochemistry of DNA topoisomerases and their poisons. In: Potmesil M, Kohn KW (eds) DNA Topoisomerases in cancer. Oxford University Press, New York Oxford, pp 13–21

    Google Scholar 

  • McLeod HL (1994) Clinical reversal of the multidrug resistance phenotype: true tumour modulation or pharmacokinetic interaction? Eur J Cancer 30A:2039–2041

    PubMed  CAS  Google Scholar 

  • Morrow CS, Cowan KH (1993) Drug resistance and its circumvention. In: Holland JF, Frei E III, Bast RC Jr, Kufe DW, Morton DL, Weichselbaum RR (eds) Cancer medicine, 3rd ed. Lea & Febiger, Philadelphia London, pp 618–630

    Google Scholar 

  • Murren JR, Hait WN (1992) Why haven’t we cured multidrug resistant tumors? Oncol Res 4:1–6

    PubMed  CAS  Google Scholar 

  • Peters GJ, Groeningen CJ van (1991) Clinical relevance of biochemical modulation of 5-fluorouracil. Ann Oncol 2:469–480

    PubMed  CAS  Google Scholar 

  • Pizzorno G, Chang YM, McGuire JJ, Bertino JR (1989) Inherent resistance of human squamous carcinoma cell lines to methotrexate as a result of decreased polyglutamylation of this drug. Cancer Res 49:5275–5290

    PubMed  CAS  Google Scholar 

  • Pommier Y (1993) DNA topoisomerases I and II in cancer chemotherapy: update and prespectives. Cancer Chemother Pharmacol 32:103–108

    PubMed  CAS  Google Scholar 

  • Raderer M, Scheithauer W (1993) Clinical trials of agents that reverse multidrug resistance. A literature review. Cancer 72:3553–3563

    PubMed  CAS  Google Scholar 

  • Reichard P, Sköld O, Klein G, Révész L, Magnusson PH (1962) Studies on resistance against 5-fluorouracil: enzymes of the uracil pathway during development of resistance. Cancer Res 22:235–243

    PubMed  CAS  Google Scholar 

  • Scheper RJ, Broxterman HJ, Scheffer GL et al. (1993) Overexpression of a Mr 110,000 vesicular protein in non-P-glycoprotein-mediated multidrug resistance. Cancer Res 53:1475–1479

    PubMed  CAS  Google Scholar 

  • Scheulen ME (1990) Development of drug derivatives without cross-resistance to parent compounds. Cancer Treat Rev 17 [Suppl A]:67–79

    PubMed  CAS  Google Scholar 

  • Scheulen ME (1990) Zelluläre Pharmakokinetik von Zytostatika. In: Dengler HJ, Schmidt CG (Hrsg) Klinische Pharmakologie und Onkologie. Fischer, Stuttgart New York, S 143–167

    Google Scholar 

  • Shackney SE, McCormack GW, Cuchural GJ Jr (1978) Growth rate patterns of solid tumors and their relation to responsiveness to therapy. An analytical review. Ann Intern Med 89:107–121

    PubMed  CAS  Google Scholar 

  • Sikic BI (1993) Modulation of multidrug resistance: at the threshold. J Clin Oncol 11:1629–1635

    PubMed  CAS  Google Scholar 

  • Sobrero A, Bertino JR (1986) Clinical aspects of drug resistance. Cancer Surv 5:93–107

    PubMed  CAS  Google Scholar 

  • Spears CP, Gustavsson BG, Berne M, Frösing R, Bernstein L, Hayes AA (1988) Mechanisms of innate resistance to thymidylate synthetase inhibition after 5-fluorouracil. Cancer Res 48:5894–5900

    PubMed  CAS  Google Scholar 

  • Tattersall MHN, Ganeshaguru K, Hoffbrand AV (1974) Mechanisms of resistance of human acute leukaemia cells to cytosine arabinoside. Br J Haematol 27:39–46

    PubMed  CAS  Google Scholar 

Literatur

  • Abrahamsen JF, Smaaland R, Sandberg S et al. (1993) Circadian variation in serum Cortisol and circulating neutrophils are markers for circadian variation of bone marrow proliferation in cancer patients. Eur J Hematol 50:206–212

    CAS  Google Scholar 

  • Bjarnason GA, Hrushesky WJM (1994) Cancer chronotherapy. In: Hrushesky WJM (ed.) Circadian Cancer Therapy. CRC Press, London, pp 241–263

    Google Scholar 

  • Boughattas NA, Lévi F, Fournier C et al. (1990) Stable circadian mechanisms of toxicity of two platinum analogs (cisplatin and carboplatin) despite repeated dosages in mice. J Pharmacol Exp Ther 255:672–679

    PubMed  CAS  Google Scholar 

  • Buchi KN, Moore JG, Hrushesky WJM et al. (1991) Circadian rhythm of cellular proliferation in the human rectal mucosa. Gastroenterology 101:410–415

    PubMed  CAS  Google Scholar 

  • Caussanel JP, Lévi F, Breinza S et al. (1990) Phase I trial of a 5-day continuous venous infusion of oxaliplatin at circadian rhythm-modulated rate compared with constant rate. J Natl Cancer Inst 82:1046–1050

    PubMed  CAS  Google Scholar 

  • Czeisler CA, Allan JS, Strogatz SH et al. (1986) Bright light resets the human circadian pacemaker independent of the timing of the sleep-wake-cycle. Science 233:667–671

    PubMed  CAS  Google Scholar 

  • Harris BE, Song R, Soong S-J, Diasio RB (1990) Relationship between dihydropyrimidine dehydrogenase activity and plasma 5-fluorouracil levels with evidence for circadian variation of enzyme activity and plasma drug levels in cancer patients receiving 5-fluorouracil by protacted continuous infusion. Cancer Res 550:197–201

    Google Scholar 

  • Haus E, Halberg F, Scheving LE et al. (1972) Increased tolerance of leukemic mice to arabinosyl cytosine with schedule adjusted to circadian system. Science 177:80–82

    PubMed  CAS  Google Scholar 

  • Hrushesky WJM (1985) Circadian timing of cancer chemotherapy. Science 228:73–75

    PubMed  CAS  Google Scholar 

  • Hrushesky WJM (1994) Cancer and time. In: Hrushesky WJM (ed) Circadian Cancer Therapy. CRC Press, London, pp 3–9

    Google Scholar 

  • Hrushesky WJM, Roemeling RV, Wood PA et al. (1987) High dose intensity systemic therapy for metastatic bladder cancer. J Clin Oncol 5:450–455

    PubMed  CAS  Google Scholar 

  • Klevecz RB, Shymko RM, Blumenfeld D et al. (1987) Circadian gating of S phase in human ovarian cancer. Cancer Res 47:6267–6271

    PubMed  CAS  Google Scholar 

  • Labrecque G, Bélanger PM (1991) Biological rhythms in the absorption, distribution, metabolism and excretion of drugs. Pharmacol Ther 52:95–107

    PubMed  CAS  Google Scholar 

  • Lévi F, Benavides M, Chevelle C et al. (1990) Chemotherapy of advanced ovarian cancer with 4′-0-tetrahydropyranyl doxorubicin and cisplatin: a randomized phase II trial with an evaluation of circadian timing and dose intensity. J Clin Oncol 8:705–714

    PubMed  Google Scholar 

  • Lévi F, Canon C, DiPalma M et al. (1991) When should the immune clock be reset? From circadian pharmacodynamics to temporally optimized drug delivery. In: Hrushesky WJM, Langer R, Theeuwes F (eds.) Temporal Control of Drug Delivery. Ann N Y Acad Sci 618:312–329

    Google Scholar 

  • Lévi F, Misset JL, Brienza S et al. (1992) A chronopharmacologic phase II clinical trial with 5-fluorouracil, folinic acid and oxalibaplatin using an ambulatory multichannel programmable pump. Cancer 69:893–900

    PubMed  Google Scholar 

  • Lévi F, Zidani R, DiPalma M et al. for the Intern Org for Cancer Chronotherapy (1994) Improved therapeutic index through ambulatory circadian rhythmic delivery (CRD) of high dose 3-drug chemotherapy in a randomized phase III multicenter trial. Proc Am Soc Clin Oncol 13:197

    Google Scholar 

  • Potten CS, Kellett M, Roberts SA et al. (1992) Measurement of in vivo proliferation in human rectal mucosa using bromodeoxyuridine. Gut 33:71–78

    PubMed  CAS  Google Scholar 

  • Roemeling Rv, Hrushesky WJM (1989) Circadian patterning of continuous floxuridine infusion reduces toxicity and allows higher dose intensity in patients with widespread cancer. J Clin Oncol 7:1710–1719

    Google Scholar 

  • Smaaland R, Abrahamsen JF, Svardal AM et al. (1992) DNA cell cycle distribution and glutathione (GSH) content according to circadian stage in bone marrow of cancer patients. Br J Cancer 66:39–45

    PubMed  CAS  Google Scholar 

  • Smaaland R, Laerum OD, Sothern RB et al. (1992) Colony-forming unitsgranulocyte/macrophage and DNA synthesis of human bone marrow are circadian stage-dependent and show covariation. Blood 79:2281–2287

    PubMed  CAS  Google Scholar 

  • Smaaland R, Lote K, Sothern RB et al. (1993) DNA synthesis and ploidy in non-Hodgkin’s lymphomas demonstrate intra-patient variation depending on circadian stage of cell sampling. Cancer Res 53:3129–3138

    PubMed  CAS  Google Scholar 

  • Wood PA, Hrushesky WJM (1985) Chronopharmacodynamics of hematopoietic growth factors and antitumor cytokines. In: Hrushesky WJM (ed) Circadian Cancer Therapy. CRC Press, London, pp 185–207

    Google Scholar 

  • Zhang R, Diasio R (1994) Pharmacologic basis for circadian pharmacodynamics. In: Hrushesky WJM (ed.) Circadian cancer therapy. CRC Press, London, pp 61–103

    Google Scholar 

  • Boven E, Winograd B, Fodstad O, Lobbezoo MW, Pinedo HM (1988) Preclinical phase II studies in human tumor lines: A European multicenter study. Eur J Cancer Clin Oncol 24:567–573

    PubMed  CAS  Google Scholar 

  • Chabner BA (1980) In defense of cell-line screening. J Natl Cancer Inst 82:1083–1085

    Google Scholar 

  • Fiebig HH (1988) Comparison of tumor response in nude mice and in patients. In: Winograd B, Peckham MJ, Pinedo HM (eds) Human tumor xenografts in anticancer drug development. ESO monographs. Springer, Berlin Heidelberg New York Tokyo, pp 25–30

    Google Scholar 

  • Gazda AF, Steinberg SM, Russel EK et al. (1990) Correlation of in vitro drug-sensitivity testing results with response to chemotherapy and survival in extensive-stage small cell lung cancer — a prospective clinical trial. J Natl Cancer Inst 82:117–124

    Google Scholar 

  • Shoemaker RH, Monks A, Alley MC (1988) Development of human tumor cell line panels for use in disease-orientated drug screening. In: Hall T (ed): Predicition of response to cancer chemotherapy. Liss, New York, pp 265–286

    Google Scholar 

  • Van Hoff DD, Kronmal R, Salmon SE et al. (1991) A Southwest Oncology Group Study on the use of a human tumor cloning assay for predicting response in patients with ovarian cancer. Cancer 67:20–27

    Google Scholar 

  • Weisenthal LM, Lippman ME (1985) Clonogenic and nonclonogenic in vitro chemosensitivity assays. Cancer Treat Rep 69:615–632

    PubMed  CAS  Google Scholar 

  • Blakey DC (1992) Drug targeting with monoclonal antibodies. A review. Acta Oncol 31:91–97

    PubMed  CAS  Google Scholar 

Literatur

  • Blakey DC (1992) Drug targeting with monoclonal antibodies. A review. Acta Oncol 31:91–97

    Google Scholar 

  • Bonfils E, Depierreux C, Midoux P, Thuong NT, Monsigny M, Roche AC (1992) Drug targeting: synthesis and endocytosis of oligonucleotide-neoglycoprotein conjugates. Nucleic Acids Res 20:4621–4629

    PubMed  CAS  Google Scholar 

  • Derbyshire EJ, Wawrzynczak EJ (1992) An anti-mucin immunotoxin BrE-3-ricin A-chain is potently and selectively toxic to human small-cell lung cancer. Int J Cancer 52:624–630

    PubMed  CAS  Google Scholar 

  • Dillman RO (1994) Antibodies as cytotoxic therapy. J Clin Oncol 12:1497–1515

    PubMed  CAS  Google Scholar 

  • Gabius H-J, Bokemeyer C, Hellmann T, Schmoll H-J (1987) Targeting of neoglycoprotein-drug conjugates to cultured human embryonal carcinoma cells. J Cancer Res Clin Oncol 113:126–130

    PubMed  CAS  Google Scholar 

  • Kramer W, Wess G, Schubert G et al. (1992) Liver-specific drug targeting by coupling to bile acids. J Biol Chem 267:18598–18604

    PubMed  CAS  Google Scholar 

  • Liliemark J (1991) Liposomes for drug targeting in cancer chemotherapy. Eur J Surg [Suppl] 561:49–52

    Google Scholar 

  • Schouten D, Kooif M van der, Pieters MN, Bijsterbosch MK, Berkel TJ van (1993) Development of lipoprotein-like lipid particles for drug targeting: neo-high density lipoproteins. Mol Pharmacol 44:486–492

    PubMed  CAS  Google Scholar 

  • Wawrzynczak EJ (1991) Systemic immunotoxin therapy of cancer: advanced and prospects. Br J Cancer 64:624–630

    PubMed  CAS  Google Scholar 

  • Carson DA, Ribeiro JM (1993) Apoptosis and disease. Lancet 341:1251–1254

    PubMed  CAS  Google Scholar 

Literatur

  • Carson DA, Ribeiro JM (1993) Apoptosis and disease. Lancet 341:1251–1254

    Google Scholar 

  • Dive C, Hickman JA (1991) Drug-target interactions: only the first step in the commitment to a programmed cell death? Br J Cancer 64:192–196

    PubMed  CAS  Google Scholar 

  • Dive C, Evans CA, Whetton AD (1992) Induction of apoptosis — new targets for cancer chemotherapy. Semin Cancer Biol 6:417–427

    Google Scholar 

  • Ellis RE, Yuan J, Horvitz HR (1991) Mechanisms and functions of cell death. Annu Rev Cell Biol 7:663–698

    PubMed  CAS  Google Scholar 

  • Evan GI, Wyllie AH, Gilbert CS, Littlewood TD, Land H, Brooks M, Waters M, Penn LZ, Hancock DC (1992) Induction of apoptosis in fibroblasts by c-myc protein. Cell 69:119–128

    PubMed  CAS  Google Scholar 

  • Fesus L (1993) Biochemical events in naturally occurring forms of cell death. FEBS letters 328 (12):1–5

    PubMed  CAS  Google Scholar 

  • Fisher D (1994) Apoptosis in cancer therapy: Crossing the treshold. Cell 78:539–542

    PubMed  CAS  Google Scholar 

  • Hartwell L, Kastan M (1994) Cell Cycle Control and Cancer. Science 266:1821–1828

    PubMed  CAS  Google Scholar 

  • Hickman JA (1992) Apoptosis induced by anticancer drugs. Cancer Metastasis Rev 11 (2):121–139

    PubMed  CAS  Google Scholar 

  • Kerr JFR, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer, 26:239–257

    PubMed  CAS  Google Scholar 

  • Lane DP (1992). p53, guardian of the genome. Nature 358:15–16

    PubMed  CAS  Google Scholar 

  • Lowe S, Bodis S, McClatchey A, Remington L, Ruley H, Fisher D, Housman DE, Jacks T (1994) p53 status and the efficacy of cancer therapy in vivo. Science, 266:807–810

    PubMed  CAS  Google Scholar 

  • Lowe SW, Ruley HE, Jacks T, Housman DE (1993) p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74:957–967

    PubMed  CAS  Google Scholar 

  • Oltvai Z, Korsmeyer S (1994). Checkpoints of dueling dimers foil death wisher. Cell 79:189–192

    PubMed  CAS  Google Scholar 

  • Peitsch MC, Polzar B, Stephan H, Crompton T, MacDonald H R, Mannherz HG, Tschopp J (1993) Characterization of the endogeneous deoxyribonuclease involved in nuclear DNA degradation during apoptosis (programmed cell death). EMBO J 12:371–377

    PubMed  CAS  Google Scholar 

  • Raff MC (1992) Social controls on cell survival and cell death. Nature 356:397–399

    PubMed  CAS  Google Scholar 

  • Sachs L, Lotem J (1993) Control of programmed cell death in normal and leukemic cells: new implications for therapy. Blood 82 (1):15–21

    PubMed  CAS  Google Scholar 

  • Searle J, Kerr JFR, Bishop CJ (1982) Necrosis and apoptosis: distinct modes of cell death with fundamentally different significance. Pathol Annu 17(2):229

    PubMed  Google Scholar 

  • Tomei LD, Cope FO (eds) Apoptosis: the molecular basis of cell death. Current communications in cell and molecular biology. Cold Spring Harbor Laboratory Press, Plainview

    Google Scholar 

  • Vaux DL (1993) Towards an understanding of the molecular mechanism of physiological cell death. Proc Natl Acad Sci 90:786–789

    PubMed  CAS  Google Scholar 

  • Wyllie AH (1992) Apoptosis and the regulation of cell numbers in normal and neoplastic tissues: an overview. Cancer Metastasis Rev 11:95–103

    PubMed  CAS  Google Scholar 

  • Wyllie AH, Kerr JFR, Currie AR (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68:251–306

    PubMed  CAS  Google Scholar 

  • Fidler IF (1986) Rationale and methods for the use of nude mice to study the biology and therapy of human cancer metastasis. Metastasis Rev 5:29–49

    CAS  Google Scholar 

Literatur

  • Fidler IF (1986) Rationale and methods for the use of nude mice to study the biology and therapy of human cancer metastasis. Metastasis Rev 5:29–49

    Google Scholar 

  • Humphries MJ, Olden K, Yamada KM (1986) A synthetic peptide from fibronectin inhibits experimental metastasis of murine melanoma cells. Science 233:467–470

    PubMed  CAS  Google Scholar 

  • Iwamoto Y, Robey FA, Graf J, Sasaki M, Kleinmann HK, Yamada Y, Martin GR (1987) YIGSR, a synthetic laminin pentapeptide inhibits experimental metastasis formation. Science 238:1132–1134

    PubMed  CAS  Google Scholar 

  • Kath R, Schmidt CG (1990) Tumorprogression und Metastasierung. Zentralbl Chir 115:785–792

    PubMed  CAS  Google Scholar 

  • Liotta L, Steeg P (1990) Clues to the function of nm23 and Awd proteins in the development, signal transduction, and tumor metastasis provided by studies of Dyctostelium discoidum. J Natl Cancer Inst 2:1170–1174

    Google Scholar 

  • Ruoshlati E, Pierschbacher MA (1987) New perspectives in cell adhesion: RGD and integrins. Science 38:491–497

    Google Scholar 

  • Balchum OJ, Doiron DR (1985) Photoradiation therapy of endobronchial lung cancer. Clin Chest Med 6:255–275

    PubMed  CAS  Google Scholar 

Literatur

  • Balchum OJ, Doiron DR (1985) Photoradiation therapy of endobronchial lung cancer. Clin Chest Med 6:255–275

    Google Scholar 

  • Benson RC (1986) Laser photodynamic therapy for bladder cancer. Mayo Clin Proc 61/11:859

    PubMed  Google Scholar 

  • Dougherty TJ (1989) Photodynamic therapy — new approaches. Semin Surg Oncol 5:6–16

    PubMed  CAS  Google Scholar 

  • Fingar VH, Wiemann TJ (1990) Studies on the mechanism of photodynamic induced tumor destruction. Proc SPIE Photodynamic Therapy: Mechanisms II/1203:168–177

    Google Scholar 

  • Harty JI, Amin M, Wieman TJ, Tseng MT, Ackerman D, Broghamer W (1989) Complications of whole bladder dihematoporphyrin ether photodynamic therapy. J Urol 141/6:1341

    PubMed  CAS  Google Scholar 

  • Henderson BW, Donovan JM (1989) Release of prostaglandin E2 from cells by photodynamic treatment in vitro. Cancer Res 45:572–576

    Google Scholar 

  • Hünerbein M, Stern J, Friedrich EA et al. (1990) Optimizalion of tumor diagnostics and photodynamic therapy with 111-Indium porphyrins. Laser Med Surg 6/3:131–135

    Google Scholar 

  • Jin ML, Yang BQ, Li R, Li P (1989) Analysis of hematoporphyrin derivative and laser photodynamic therapy of upper gastrointestinal tumours in 52 cases. Laser Med Sci 2:51

    Google Scholar 

  • Jocham D, Bau mgartner R, Stepp H, Unsöld E (1990) Clinical experience with the integral photodynamic therapy of bladder carcinoma J Photochem Photobiol 6 (1–2):183

    CAS  Google Scholar 

  • Kato H, Kawaguchi M, Konaka C, Nishimiya K, Hayala Y (1986) Evaluation of photodynamic therapy in gastric cancer. Laser Med Sci 1:67 (1986)

    Google Scholar 

  • Mang TS, McGinnis C, Crean DH, Khan S, Liebow C (1992) Fluorescence detection of tumors: studies on the early diagnosis of microscopic lesions in preclinical and clinical studies. J Cell Pharmacol 3:132–140

    CAS  Google Scholar 

  • McCaughan JS, Nims TA, Guy JT (1989) Photodynamic therapy for oesophageal tumours. Arch Surg 124:74

    PubMed  Google Scholar 

  • Pennington DG, Waner M, Knox A (1988) Photodynamic therapy for multiple skin cancer. Plast Reconstr Surg 82:1067–1071

    PubMed  CAS  Google Scholar 

  • Schlag P, Hünerbein M, Stern J, Gahlen J, Graschew G (1991) Photodynamische Therapie gastrointestinaler Karzinome. Dtsch Med Wochenschr 116:619–624

    PubMed  CAS  Google Scholar 

  • Schlag P, Hünerbein M, Stern J, Gahlen J, Graschew G (1992) Photodynamische Therapie: Behandlungsalternative des lokal rezidivierten Mammakarzinomes. Dtsch Ärzteblatt 9:674–678

    Google Scholar 

  • Cournoyer D, Caskey CT (1993) Gene therapy of the immune system. Annu Rev Immunol 11:297–329

    PubMed  CAS  Google Scholar 

Literatur

  • Cournoyer D, Caskey CT (1993) Gene therapy of the immune system. Annu Rev Immunol 11:297–329

    Google Scholar 

  • Herrmann F, Kiehntopf M, Brach MA (1994) Somatic gene therapy in oncology: Status quo and quo vadis? Onkologie 17:91–101

    Google Scholar 

  • Moolten F (1986) Tumor chemosensitivity conferred by inserted herpes thymidin kinase genes: Paradigm for a prospective cancer control strategy. Cancer Res 46:5276–5281

    PubMed  CAS  Google Scholar 

  • Mulligan RA, Anderson WF (1993) Human gene therapy. Annu Rev Biochem 62:191–217

    Google Scholar 

  • Chabner BA (1993) Biological basis for cancer treatment. Ann Intern Med 118:633–637

    PubMed  CAS  Google Scholar 

Literatur

  • Chabner BA (1993) Biological basis for cancer treatment. Ann Intern Med 118:633–637

    Google Scholar 

  • Maher LJ (1992) DNA Triple-Helix formation: An approach to artificial gene repressors. Bioessays 14:807–815

    PubMed  CAS  Google Scholar 

  • Rossi JJ (ed) (1993) Antisense RNA and ribozymes. Methods Enzymol 5:1–75

    Google Scholar 

  • Stein CA, Cheng YC (1993) Antisense olgionucleotides as therapeutic agents: Is the bullet really magical? Science 261:1004–1012

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Heidelberg

About this chapter

Cite this chapter

Harstrick, A. et al. (1996). Neue Entwicklungen in der Tumortherapie. In: Schmoll, HJ., Höffken, K., Possinger, K. (eds) Kompendium Internistische Onkologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79214-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79214-4_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58370-7

  • Online ISBN: 978-3-642-79214-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics