Therapeutic Strategies in Experimental Acute Pancreatitis

  • M. M. Lerch
  • G. Adler
Conference paper


for almost a century animal models of pancreatitis have been employed to test new and promising treatment modalities. Only a handful of these models have been found to be relevant to human disease and even less therapeutic approaches have ever been subjected to the scrutiny of controlled clinical trials. Nonetheless, it is now undebated that novel therapeutic regimens ought to prove their effectiveness in a number of experimental models of pancreatitis before a beneficial effect for patients with the clinical disease can even be speculated upon. The following chapter review the experimental models most widely accepted for therapeutic studies and the most recent advances in pancreatitis therapy reported from these models.


Acute Pancreatitis Pancreatic Duct Acinar Cell Pancreatic Secretion Acute Necrotizing Pancreatitis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adler G, Hupp T, Kern HF (1979) Course and spontaneous regression of acute pancreatitis in the rat. Virchows Arch [A] Pathol Anat Histol 382:31–47CrossRefGoogle Scholar
  2. 2.
    Lombardi B, Estes LW, Longnecker DS (1975) Acute hemorrhagic pancreatitis (massive necrosis) with fat necrosis induced in mice by DL-ethionine fed with a choline-defkient diet. Am J Pathol 79:465 – 480PubMedGoogle Scholar
  3. 3.
    Bernard C (1856) Leçons de physiologie experimentale vol 2. Bailiiere, Paris, p 278Google Scholar
  4. 4.
    Hernandez CA, Lerch MM (1993) Sphinter stenosis and gallstone migration through the biliary tract. Lancet 341:1371 –1373PubMedCrossRefGoogle Scholar
  5. 5.
    Lerch MM, Saluja AK, Rünzi M, Dawra R, Saluja M, Steer ML (1993) Pancreatic duct obstruction triggers acute necrotizing pancreatitis in the opossum. Gastroenterology 104:853–861PubMedGoogle Scholar
  6. 6.
    Schmidt J, Rattner DW, Lewandrowski K, Compton CC, Mandavilli U, Knoefel WT, War-shaw AL (1992) A better model of acute pancreatitis for evaluating therapy. Ann Surg 215:44–56PubMedCrossRefGoogle Scholar
  7. 7.
    Walker NI (1987) Ultrasturcture of the rat pancreas after experimental duct ligation. The role of apoptosis and intraepithelial macrophages in acinar cell deletion. Am J Pathol 126: 439–451PubMedGoogle Scholar
  8. 8.
    Senninger N, Moody FG, Coelho JCU, Van Buren DH (1986) The role of biliary obstruction in the pathogenesis of acute pancreatitis in the opossum. Surgery 99:688 – 693PubMedGoogle Scholar
  9. 9.
    Lerch MM, Saluja AK, Dawra R, Ramarao P, Saluja M, Steer ML (1992) Acute necrotizing pancreatitis in the opossum: earliest morphologic changes involve acinar cells. Gastro-enterology 103:205 – 213Google Scholar
  10. 10.
    Rünzi M, Saluja A, Lerch MM, Dawra R, Nishino H, Steer ML (1993) Early ductal decompression prevents the progression of biliary pancreatitis: an experimental study. Gastro-enterology 105 : (in press)Google Scholar
  11. 11.
    Chiari H (1896) Ueber Selbstverdauung des menschlichen Pankreas. Z Heilkd 17:69 – 96Google Scholar
  12. 12.
    Ko TC, Bertram MF, Prinz RA, Castelli M, Djuricin G, Jacobs KH (1992) Effect of somatostatin analogue and cholecystokinin receptor antagonist on bile-induced acute canine pancreatitis. Am Surg 58:213 – 219PubMedGoogle Scholar
  13. 13.
    Sternlieb JM, Aronchick A, Retig JN, Dabezies M, Saunders F, Goosenberg E, Infantolino A, Ionna S, Maislin G, Wright SH, Lipshutz WH (1992) A multicenter, randomized, controlled trial to evaluate the effect of prophylactic octreotide on ERCP-induced pancreatitis. Am J Gastroenterol 87:1561–1566PubMedGoogle Scholar
  14. 14.
    D’Amico D, Favia G, Biasiato R, Casaccia M, Falcone F, Fersini M, Marrano D, Napoli-tano F, Oliviero S, Rodolico A (1990) The use of somatostatin in pancreatitis — results of a multicenter trial. Hepatogastroenterology 37:92–98PubMedGoogle Scholar
  15. 15.
    Büchler M, Friess H, Klempa I, Hermanek P, Sulkowski U, Becker H, Schafmayer A, Baca I, Lorenz D, Meister R, Kremer B, Wagner P, Witte J, Zurmayer EL, Saeger HD, Rieck B, Dollinger P, Glaser K, Teichmann R, Konradt J, Gaus W, Dennler HJ, Wizel D, Beger HG (1992) Role of octreotide in the prevention of postoperative complications following pancreatic resection. Am J Surg 163:125 –130PubMedCrossRefGoogle Scholar
  16. 16.
    Niederau C, Ferell LD, Grendell JH (1985) Caerulein-induced acute necrotizing pancreatitis in mice: protective effects of proglumide, benzotrypt, and secretin. Gastroenterology 88:1192–1204PubMedGoogle Scholar
  17. 17.
    Oshio G, Saluja A, Leli U, Sengupta A, Steer ML (1989) Failure of a potent cholecystokinin antagonist to protect against diet-induced pancreatitis in mice. Panreas 4:739–743CrossRefGoogle Scholar
  18. 18.
    Leonhardt U, Seidensticker F, Fussek M, Stöckmann F, Creutzfeld W (1991) Influence of the CCK-antagonist loxiglumide on bile-induced experimental pancreatitis. Int J Pancreatol 10:73–80PubMedGoogle Scholar
  19. 19.
    Adler G, Reinshagen M, Koop I, Göke B, Schafmayer A, Rovati LC, Arnold R (1989) Differential effects of atropine and a cholecystokinin receptor antagonist on pancreatic secretion. Gastroenterology 96:1158 –1164PubMedGoogle Scholar
  20. 20.
    Saluja AK, Saluja M, Printz H, Zavertnik A, Sengupta A, Steer ML (1989) Experimental pancreatitis is mediated bu low-affinity cholecystokinin receptors that inhibit digestive enzyme secretion. Proc Natl Acad Sci USA 86:8968 – 8971PubMedCrossRefGoogle Scholar
  21. 21.
    Glasbrenner B, Büchler M, Uhl W, Malfertheiner P (1992) Exocrine function in the early recovery phase of acute oedematous pancreatitis. Eur J Gastroenterol Hepatol 4:563–567Google Scholar
  22. 22.
    Neoptolomos JP, London NJ, James D, Carr-Locke DL, Bailey IA, Fossard DP (1988) Controlled trial of urgent endoscopic retrograde cholangiopancreatography and endoscopic sphinterotomy versus conservative treatment for acute pancreatitis due to gallstones. Lancet 2:979–983CrossRefGoogle Scholar
  23. 23.
    Keim V, Adler G, Haberich FJ, Kern HF (1985) Failure of secretin to prevent or ameliorate cerulein-induce pancreatitis in the rat. Hepatogastroenterology 32:91–95PubMedGoogle Scholar
  24. 24.
    Schoenberg MH, Büchler M, Gaspar M, Stinner A, Younes M, Melzner I, Bültmann B, Beger HG (1990) Oxygen free radicals in acute pancreatitis of the rat. Gut 31:1138–1143PubMedCrossRefGoogle Scholar
  25. 25.
    Niederau C, Niederau M, Borchard F, Ude K, Lüthen R, Strohmeyer G, Ferrell LD, Grendell JH (1992) Effects of antioxidants and free radical scavengers in three different models of acute pancreatitis. Pancreas 7:486–496PubMedCrossRefGoogle Scholar
  26. 26.
    Panum PL (1962) Experimentelle Beiträge zur Lehre von der Embolie. Virchos Arch Pathol Anat 25:308–323Google Scholar
  27. 27.
    Gress TM, Arnold R, Adler G (1990) Structural alterations of pancreatic microvasculature in caeruelin-induced pancreatitis in the rat. Res Exp Med 190:401 – 412CrossRefGoogle Scholar
  28. 28.
    Bleeker WK, Agterberg J, Rigter G, Hack CE, Gool JV (1992) Protective effect of anti-thrombin III in acute experimental pancreatitis in rats. Dig Dis Sci 37:280–285PubMedCrossRefGoogle Scholar
  29. 29.
    Nugent FW, Atendido WA, Bullan MB, MacDonald AJ (1966) Kininase activity in experimental pancreatitis. Nature 211:207–208PubMedCrossRefGoogle Scholar
  30. 30.
    Griesbacher T, Lembeck F (1992) Effects of the bradykinin antagonist, HOE 140, in experimental acute pancreatitis. Br J Pharmacol 107:356–360PubMedGoogle Scholar
  31. 31.
    Lerch MM, Weidenbach H, Gress TM, Adler G (1992) Effect of the potent bradykinin antagonist HOE-140 in acute pancreatitis in the rat. Pancreas 7:745Google Scholar
  32. 32.
    Leach SD, Modlin IM, Scheele GA, Gorelick FS (1991) Intracellular activation of digestive zymogens in rat pancreatic acini. Stimulation by high doses of cholecystokinin. J Clin Invest 87:326–366CrossRefGoogle Scholar
  33. 33.
    Bialek R, Willemer S, Arnold R, Adler G (1991) Evidence of intracellular activation of serine proteases in acute caerulein-induced pancreatitis in rats. Scand J Gastroenterol 26:190–196PubMedCrossRefGoogle Scholar
  34. 34.
    Kimura W, Meyer F, Hess D, Kirchner T, Fischbach W, Mössner J (1992) Comparison of different treatment modalities in experimental pancreatitis in rats. Gastroenterology 103:1916 –1924PubMedGoogle Scholar
  35. 35.
    Hirano T, Manabe T (1992) A new elastase inhibitor, EI-546, protects lungs but not pancreas in caerulein-induced pancreatitis in rat. Med Sci Res 20:473–474Google Scholar
  36. 36.
    Ranson JHC, Berman RS (1990) Long peritoneal lavage decreases pancreatic sepsis in acute pancreatitis. Ann Surg 211:708–718PubMedCrossRefGoogle Scholar
  37. 37.
    Wilson C, Imrie CW (1990) Effective intraperitoneal antiprotease therapy for taurocho-late-induced pancreatitis in rats. Br J Surg 77:1252–1255PubMedCrossRefGoogle Scholar
  38. 38.
    Fric P, Slaby J, Kasafírek E, Kocna P, Marek J (1992) Effective peritoneal therapy of acute pancreatitis in the rat with glutaryl-trialanin-ethylamide: a novel inhibitor of pancreatic elastase. Gut 33:701 – 706PubMedCrossRefGoogle Scholar
  39. 39.
    Greenbaum LM, Hirschkowitz A, Shoichet I (1959) The activation of trypsinogen by cathepsin B. J Biol Chem 234:2885–2890PubMedGoogle Scholar
  40. 40.
    Steer ML, Meldolesi J, Figarella C (1984) Pancreatitis: the role of lysosomes. Dig Dis Sci 29:934–938PubMedCrossRefGoogle Scholar
  41. 41.
    Saluja A, Steer D, Lerch M, Dawra R, Saluja M, Steer M (1991) Failure of the cathepsin B inhibitor, E-64, to protect against caerulein and CDE-diet induced pancreatitis. Pancreas 6:718Google Scholar
  42. 42.
    Leach SD, Bilchik AJ, Karapetian O, Gorelick FS, Modlin IM (1993) Influence of chloroquine on diet-induced pancreatitis. Pancreas 8:64–69PubMedCrossRefGoogle Scholar
  43. 43.
    Lerch MM, Saluja AK, Dawra R, Saluja M, Steer ML (1993) The effect of chloroquine administration on two experimental models of acute pancreatitis. Gastroenterology 104: 1768–1779PubMedGoogle Scholar
  44. 44.
    O’Konski MS, Pandol SJ (1990) Effects of caerulein on the apical cytoskeleton of the pancreatic acinar cell. J Clin Invest 86:1649–1657PubMedCrossRefGoogle Scholar
  45. 45.
    Lerch MM, Jungermann J, Krüger B, Weidenbach H, Adler G (1993) Early intracellular degradation of cytoskeletal actin and β-tubulin in secretagogue-induced pancreatitis. Gastroenterology 104: A316Google Scholar
  46. 46.
    Ueda T, Takeyama Y, Kaneda K, Adachi M, Ohyanagi H, Saitoh Y (1992) Protective effect of a microtubule stabilizer taxol on caerulein-induced acute pancreatitis in rat. J Clin Invest 89:234–243PubMedCrossRefGoogle Scholar
  47. 47.
    Saluja A, Maitre N, Rünzi M, Dawra R, Nishino H, Saluja M, Steer ML (1993) Taxol alters the dose-dependence of secretagogue-induced pancreatitis and high dose inhibition of digestive enzyme secretion from rat pancreas. Gastroenterology 104:A471Google Scholar
  48. 48.
    Warshaw AL (1993) Damage prevention versus damage control in acute pancreatitis. Gastroenterology 104:1216 –1219PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • M. M. Lerch
  • G. Adler

There are no affiliations available

Personalised recommendations