Skip to main content

Biological Mechanisms and Toxicological Consequences of the Methylation of Arsenic

  • Chapter
Book cover Toxicology of Metals

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 115))

Abstract

Since ancient times, arsenic (As) has been recognized as an agent with potent biological effects (FRost 1967). Both Hippocrates and Galen described the medicinal use of As-containing sulfides and oxides (BUchanan 1962). In the era before penicillin, the antibiotic potency of organic As (organoAs) compounds made them an important part of the pharmaceutical armamentarium (GOodman and GIlman 1941). The potent toxicity of As results in its continued use as a component of insecticides, herbicides, and rodenticides and as a wood preservative. As has long been used in glass-making, and As-containing semiconductors will likely play an increasingly large role in electronics manufacture.

The first two authors contributed equally to the preparation of this review. This manuscript has been reviewed in accordance with the policy of the Health Effects Research Laboratory, United States Environmental Protection Agency, and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anundi I, Hogberg J, Vahter M (1982) GSH release in bile as influenced by arsenite. FEBS Lett 145:285–288

    PubMed  CAS  Google Scholar 

  • Bertolero F, Marafante E, Edel Rade J, Pietra R, Sabbioni E (1981) Biotransformation and intracellular binding of arsenic in tissue of rabbits after intraperitoneal administration of 74As labelled arsenite. Toxicology 20:35–44

    PubMed  CAS  Google Scholar 

  • Braman RS, Foreback CC (1973) Methylated forms of arsenic in the environment. Science 182:1247–1249

    PubMed  CAS  Google Scholar 

  • Buchanan WD (1962) Toxicity of arsenic compounds. Elsevier, Amsterdam

    Google Scholar 

  • Buchet JP, Lauwerys R (1985) Study of inorganic arsenic methylation by rat in vitro:relevance for the interpretation of observations in man. Arch Toxicol 57:125–129

    PubMed  CAS  Google Scholar 

  • Buchet JP, Lauwerys R (1987) Study of factors influencing the in vivo methylation of inorganic arsenic in rats. Toxicol Appl Pharmacol 91:65–74

    PubMed  CAS  Google Scholar 

  • Buchet JP, Lauwerys R (1988) Role of thiols in the in vitro methylation of inorganic arsenic by rat liver cytosol. Biochem Pharmacol 37:3149–3153

    PubMed  CAS  Google Scholar 

  • Buchet JP, Lauwerys R, Roels H (1981a) Urinary excretion of inorganic arsenic and its metabolites after repeated ingestion of sodium metaarsenite. Int Arch Occup Environ Health 48:111–118

    CAS  Google Scholar 

  • Buchet JP, Lauwerys R, Roels H (1981b) Comparison of the urinary excretion of arsenic metabolites after a single oral dose of sodium arsenite, monomethylarsonate, or dimethylarsinate in man. Int Arch Occup Environ Health 48:71–79

    CAS  Google Scholar 

  • Buchet JP, Geubel A, Pauwels S, Mahieu P, Lauwerys R (1984) The influence of liver disease on the methylation of arsenite in humans. Arch Toxicol 55:151–154

    PubMed  CAS  Google Scholar 

  • Cannon JR, Edmonds JS, Francesconi KA, Raston CL, Saunders JB, Skelton BW, White AH (1981) Isolation, crystal structure and synthesis of arsenobetaine a constituent of the western rock lobster Panulirus cygnus, the dusky shark, Carcharhinus obscurus and some samples of human urine. Aust J Chem 34:787–798

    CAS  Google Scholar 

  • Cebrián ME, Del Razo LM, García-Vargas G (1993) Indicators of susceptibility and damage in arsenic exposed populations. In: Book of abstracts, International Conference on Arsenic Exposure. 28–30 July 1993, New Orleans, LA, p 12

    Google Scholar 

  • Challenger F (1945) Biological methylation. Chem Revs 36:315–361

    CAS  Google Scholar 

  • Challenger F (1951) Biological methylation. Adv Enzymol 12:429–491

    CAS  Google Scholar 

  • Chen CJ, Chuang YC, Lin TM, Wu HY (1985) Malignant neoplasms among residents of a blackfoot disease-endemic area in Taiwan:high arsenic artesian well water and cancers. Cancer Res 45:5895–5899

    PubMed  CAS  Google Scholar 

  • Chen CJ, Wu MM, Lee SS, Wang JD, Cheng SH, Wu HY (1988) Atherogenicity and carcinogenicity of high-arsenic artesian well water. Multiple risk factors and related malignant neoplasms of blackfoot disease. Arteriosclerosis 8:452–460

    PubMed  CAS  Google Scholar 

  • Coulson EJ, Remington RE, Lynch KM (1935) Metabolism in the rat of the naturally occurring arsenic of shrimp as compared with arsenic trioxide. J Nutr 10:255–270

    CAS  Google Scholar 

  • Cox DP, Alexander M (1973) Production of trimethylarsine gas from various arsenic compounds by three sewage fungi. Bull Environ Contam Toxicol 9:84–88

    PubMed  CAS  Google Scholar 

  • Crecelius EA (1977) Changes in the chemical speciation of arsenic following ingestion by man. Environ Health Perspect 19:147–150

    PubMed  CAS  Google Scholar 

  • Dabeka RW, McKenzie AD, Lacroix GMA, Cleroux C, Bowe S, Graham RA, Conacher HBS, Verdier P (1993) Survey of arsenic in total diet food composites and estimation of the dietary intake of arsenic by Canadian adults and children. J AOAC Int 76:14–25

    PubMed  CAS  Google Scholar 

  • Delnomdedieu M, Basti MM, Otvos JO, Thomas DJ (1993) Transfer of arsenite from glutathione to dithiol:a model of interaction. Chem Res Toxicol 6:598–602

    PubMed  CAS  Google Scholar 

  • Delnomdedieu M, Basti MM, Otvos JO, Thomas DJ (1994) Reduction of arsenate and dimethylarsinate by glutathione: a magnetic resonance study. Chem Biol Interact (in press)

    Google Scholar 

  • Doerfler W (1983) DNA methylation and differentiation. Annu Rev Biochem 52:93–124

    PubMed  CAS  Google Scholar 

  • Doi R (1991) Individual difference of methylmercury metabolism in animals and its significance in methylmercury toxicity. In:Imura N, Clarkson TW (eds) Advances in mercury toxicology. Plenum, New York, p 77

    Google Scholar 

  • Edmonds JS, Francesconi KA, Cannon JR, Raston CL, Skelton BW, White AH (1977) Isolation, crystal structure and synthesis of arsenobetaine, the arsenical constituent of the western rock lobster Panulirus longipes cygnus George. Tetrahedron Lett 18:1543–1546

    Google Scholar 

  • Fearon EH, Vogelstein B (1990) A genetic model for colorectal carcinogenesis. Cell 61:757–767

    Google Scholar 

  • Foa V, Colombi A, Maroni M, Buratti M, Calzaferri G (1984) The speciation of chemical forms of arsenic in the biological monitoring of exposure to inorganic arsenic. Sci Total Environ 34:241–259

    PubMed  CAS  Google Scholar 

  • Frost DV (1967) Arsenicals in biology. Retrospect and prospect. Fed Proc 26:194–208

    PubMed  CAS  Google Scholar 

  • Fuentes N, Zambrano F, Rosenmann M (1981) Arsenic contamination:metabolic effects and localization in rats. Comp Biochem Physiol 70C:269–272

    CAS  Google Scholar 

  • Gadd GM (1993) Microbial formation and transformation of organometallic and organometalloid compounds. FEMS Microbiol Rev 11:297–316

    CAS  Google Scholar 

  • Georis B, Cardenas A, Buchet JP, Lauwerys R (1990) Inorganic arsenic methylation by rat tissue slices. Toxicology 63:73–84

    PubMed  CAS  Google Scholar 

  • Geubel AP, Mairlot MC, Buchet JP, Dive C, Lauwerys R (1988) Abnormal methylation capacity in human liver cirrhosis. Int J Clin Pharmacol Res VIII:117–122

    Google Scholar 

  • Goodman LS, Gilman A (1941) Drugs used in the chemotherapy of syphilis. I. The pharmacology and clinical toxicology of the anti syphilitic arsenicals — the arsphenamines, mapharsen and tryparasamide. In: The pharmacological basis of therapeutics, 2nd edn. Macmillan, New York, p 946

    Google Scholar 

  • Gyurasics A, Varga F, Gregus Z (1991a) Effects of arsenicals on biliary excretion of endogenous glutathione and xenobiotics with glutathione-dependent hepatobiliary transport. Biochem Pharmacol 41:937–944

    CAS  Google Scholar 

  • Gyurasics A, Varga F, Gregus Z (1991b) Glutathione-dependent biliary excretion of arsenic. Biochem Pharmacol 42:465–468

    CAS  Google Scholar 

  • Harvey SC (1970) Arsenic. In:Goodman LS, Gilman A (eds) The pharmacological basis of therapeutics, 4th edn. Macmillan, New York, p 958

    Google Scholar 

  • Hirata M, Hisanaga A, Tanaka A, Ishinishi N (1988) Glutathione and methylation of inorganic arsenic in hamsters. Appl Organomet Chem 2:315–320

    CAS  Google Scholar 

  • Hirata M, Mohri T, Hisanaga A, Ishinishi N (1989) Conversion of arsenite and arsenate to methylarsenic and dimethylarsenic compounds by homogenates prepared from livers and kidneys of rats and mice. Appl Organomet Chem 3:335–341

    CAS  Google Scholar 

  • Hirata M, Tanaka A, Hisanaga A, Ishinishi N (1990) Effects of glutathione depletion on the acute nephrotoxic potential of arsenite and on arsenic metabolism in hamsters. Toxicol Appl Pharmacol 106:469–481

    PubMed  CAS  Google Scholar 

  • Hoffman JL (1980) The rate of transmethylation in mouse liver as measured by trapping S-adenosylhomocysteine. Arch Biochem Biophys 205:132–135

    PubMed  CAS  Google Scholar 

  • Hopenhayn-Rich C, Smith AH, Goeden HM (1993) Human studies do not support the methylation threshold hypothesis for the toxicity of inorganic arsenic. Environ Res 60:161–177

    PubMed  CAS  Google Scholar 

  • Huang H, Huang CF, Wu DR, Jinn CM, Jan KY (1993) Glutathione as a cellular defense against arsenite toxicity in cultured Chinese hamster ovary cells. Toxicology 79:195–204

    PubMed  CAS  Google Scholar 

  • Hughes MF, Menache M, Thompson DJ (1994) Dose-dependent disposition of sodium arsenate in mice following acute oral exposure. Fund Appl Toxicol 22:80–89

    CAS  Google Scholar 

  • Hunter FT, Kip AF, Irvine JF Jr (1942) Radioactive tracer studies on arsenic injected as potassium arsenite. J Pharmacol Exp Ther 76:207–220

    CAS  Google Scholar 

  • International Agency for Research on Cancer (1987) Arsenic and arsenic compounds. In: IARC monograph on the evaluation of carcinogenic risks to humans — overall evaluations of carcinogenicity: an update of IARC Monographs 1 to 42, [Suppl 7], Lyon, p 100

    Google Scholar 

  • Ji G, Silver S (1992) Reduction of arsenate to arsenite by the ArsC protein of the arsenic resistance operon of Staphylococcus aureus plasmid pI258. Proc Natl Acad Sci USA 89:9474–9478

    PubMed  CAS  Google Scholar 

  • Joint WHO/FAO Expert Committee on Food Additives (1989) Evaluation of certain food additives and contaminants, 33rd report, technical report series 776. WHO, Geneva, p 27

    Google Scholar 

  • Kurosawa S, Yasuda K, Taguchi M, Yamazaki S, Toda S, Morite M, Uehiro T, Fuga K (1980) Identification of arsenobetaine, a water soluble arsenic compound in muscle and liver of a shark Prionace glauca. Agric Biol Chem 44:1993–1994

    CAS  Google Scholar 

  • Lakso JU, Peoples SA (1975) Methylation of inorganic arsenic by mammals. J Agric Food Chem 23:674–676

    PubMed  CAS  Google Scholar 

  • Lanz H, Wallace PC, Hamilton JG (1950) The metabolism of arsenic in laboratory animals using As74 as a tracer. Univ Calif Publ Pharmacol 2:253–282

    Google Scholar 

  • Lee T-C, Wei ML, Chang WJ, Ho IC, Lo JF, Jan KY, Huang H (1989) Elevation of glutathione and glutathione S-transferase activity in arsenic resistant Chinese hamster ovary cells. In Vitro Cell Dev Biol 25:442–448

    Google Scholar 

  • Lerman S, Clarkson TW (1983) The metabolism of arsenite and arsenate by the rat. Fund Appl Toxicol 3:309–314

    CAS  Google Scholar 

  • Luten JB, Riekwel-Booy G, Rauchbaar A (1982) Occurrence of arsenic in plaice (Pleuronectes platessa), nature of organo-arsenic compound present and its excretion by man. Environ Health Perspect 45:165–170

    PubMed  CAS  Google Scholar 

  • Luten JB, Riekwel-Booy G, Greef JVD, ten Oever de Brauw MC (1983) Identification of arsenobetaine in sole, lemon sole, flounder, dab, crab and shrimps by field desorption and fast bombardment mass spectrometry. Chemosphere 12:131–141

    CAS  Google Scholar 

  • Mahieu P, Buchet J-P, Roels HA, Lauwerys R (1981) The metabolism of arsenic in humans acutely intoxicated by As2O3. Its significance for the duration of BAL therapy. Clin Toxicol 18:1067–1075

    PubMed  CAS  Google Scholar 

  • Mahieu P, Buchet J-P, Lauwerys R (1987) Evolution clinique et biologique d’une intoxication orale aigue par l’anhydride arsenieux et considerations sur l’attitude therapeutique. J Toxicol Clin Exp 7:273–278

    PubMed  CAS  Google Scholar 

  • Maiorino RM, Aposhian HV (1985) Dimercaptan metal-binding agents influence the biotransformation of arsenite in the rabbit. Toxicol Appl Pharmacol 77:240–250

    PubMed  CAS  Google Scholar 

  • Marafante E, Vahter M (1984) The effect of methyltransferase inhibition on the metabolism of [74As]arsenite in mice and rabbits. Chem Biol Interact 50:49–57

    PubMed  CAS  Google Scholar 

  • Marafante E, Vahter M (1986) The effect of dietary and chemically induced methylation deficiency on the metabolism of arsenate in the rabbit. Acta Pharmacol Toxicol 59 [Suppl 7]:35–38

    CAS  Google Scholar 

  • Marafante E, Vahter M, Dencker L (1984) Metabolism of arsenocholine in mice, rats and rabbits. Sci Total Environ 34:223–240

    PubMed  CAS  Google Scholar 

  • Marafante E, Vahter M, Envall J (1985) The role of methylation in the detoxification of arsenate in the rabbit. Chem Biol Interact 56:225–238

    PubMed  CAS  Google Scholar 

  • Marafante E, Vahter M, Norin H, Envall J, Sandström M, Christakopoulos A, Ryhage R (1987) Biotransformation of dimethylarsinic acid in mouse, hamster and man. J Appl Toxicol 7:111–117

    PubMed  CAS  Google Scholar 

  • Mass MJ (1992) Human carcinogenesis by arsenic. Environ Geochem Health 14:49–54

    CAS  Google Scholar 

  • McBride BC, Wolfe RS (1971) Biosynthesis of dimethylarsine by methanobacterium. Biochemistry 10:4312–4317

    PubMed  CAS  Google Scholar 

  • McKinney JD (1992) Metabolism and disposition of inorganic arsenic in laboratory animals and humans. Environ Geochem Health 14:43–48

    CAS  Google Scholar 

  • Mercer JF, Livingston J, Hall B, Paynter JA, Begy C, Chandrasekharappa S, Lockhart P, Grimes A, Bhave M, Siemieniak D et al. (1993) Isolation of a candidate gene for Menkes’ disease by positional cloning. Nature Genet 3:20–25

    PubMed  CAS  Google Scholar 

  • Mergeay M (1991) Towards an understanding of the genetics of bacterial metal resistance. Trends Biotech 9:17–24

    CAS  Google Scholar 

  • Michalowsky LA, Jones PA (1989) DNA methylation and differentiation. Environ Health Perspect 80:189–197

    PubMed  CAS  Google Scholar 

  • Mohri T, Hisanaga A, Ishinishi N (1990) Arsenic intake and excretion by Japanese adults: a 7-day duplicate diet study. Food Chem Toxicol 28:521–529

    PubMed  CAS  Google Scholar 

  • Moody JP, Williams RT (1964a) The fate of 4-nitrophenylarsonic acid in hens. Food Cosmet Toxicol 2:695–706

    CAS  Google Scholar 

  • Moody JP, Williams RT (1964b) The metabolism of 4-hydroxy-3-nitrophenylarsonic acid in hens. Food Cosmet Toxicol 2:707–715

    CAS  Google Scholar 

  • Murai T, Iwata H, Otoshi T, Endo G, Horiguchi S, Fukushima S (1993) Renal lesions induced in F344/DuCrj rats by 4 weeks oral administration of dimethylarsenic acid. Toxicol Lett 66:53–61

    PubMed  CAS  Google Scholar 

  • National Research Council (1977) Medical and biologic effects of environmental pollutants. Arsenic. National Academy of Sciences, Washington DC, p 16

    Google Scholar 

  • Newberne PM, Rogers AE (1986) Labile methyl groups and the promotion of cancer. Annu Rev Nutr 6:407–432

    PubMed  CAS  Google Scholar 

  • Norin H, Christakopoulos A (1982) Evidence for the presence of arsenobetaine and other organoarsenicals in shrimps. Chemosphere 11:287–298

    CAS  Google Scholar 

  • Norin H, Ryhage R, Christakopoulos A, Sandström (1983) New evidence for the presence of arsenobetaine in shrimps (Pandalus borealis) by use of pyrolysis gas chromatography-atomic absorption spectrometry /mass spectromety. Chemosphere 12:299–315

    CAS  Google Scholar 

  • Norin H, Vahter M, Christakopoulos, Sandstrom M (1985) Concentration of inorganic and total arsenic in fish from industrially polluted water. Chemosphere 14:325–334

    CAS  Google Scholar 

  • Odanaka Y, Matano O, Goto S (1980) Biomethylation of inorganic arsenic by the rat and some laboratory animals. Bull Environ Contam Toxicol 24:452–459

    CAS  Google Scholar 

  • Offergelt JA, Roels H, Buchet JP, Boeckx M, Lauwerys R (1992) Relation between airborne arsenic trioxide and urinary excretion of inorganic arsenic and its methylated metabolites. Br J Ind Med 49:387–393

    PubMed  CAS  Google Scholar 

  • Overby LR, Frederickson RL (1963) Metabolic stability of radioactive arsanilic acid in chickens. J Agric Food Chem 11:378–381

    CAS  Google Scholar 

  • Overby LR, Frederickson RL (1965) Metabolism of arsanilic acid. II. Localization and type of arsenic excreted and retained by chickens. Toxicol Appl Pharmacol 7:855–867

    PubMed  CAS  Google Scholar 

  • Overby LR, Straube L (1965) Metabolism of arsanilic acid. I. Metabolic stability of double labeled arsanilic acid in chickens. Toxicol Appl Pharmacol 7:850–854

    PubMed  CAS  Google Scholar 

  • Peoples SA (1964) Review of arsenical pesticides. In:Woolson EA (ed) Arsenical pesticides. ACS, Washington DC, p 1 (ACS symposium series 7)

    Google Scholar 

  • Peoples SA (1969) The failure of methanearsonic acid to cross the blood-mammary barrier when administered orally to lactating cows. Fed Proc 28:359 (abstract)

    Google Scholar 

  • Pershagen G, Bjorklund N-E (1985) On the pulmonary tumorigenicity of arsenic trioxide and calcium arsenate in hamsters. Cancer Lett 27:99–104

    PubMed  CAS  Google Scholar 

  • Pershagen G, Nordberg G, Bjorklund N-E (1984) Carcinomas of the respiratory tract in hamsters given arsenic trioxide and/or benzo(a)pyrene by the pulmonary route. Environ Res 34:227–241

    PubMed  CAS  Google Scholar 

  • Petito CT, Beck BD (1991) Evaluation of evidence of nonlinearities in the dose-response curve for arsenic carcinogenesis. Trace Subst Environ Health 24:143–176

    Google Scholar 

  • Pomroy C, Charbonneau SM, McCullough RS, Tam GKH (1980) Human retention studies with 74As. Toxicol Appl Pharmacol 53:550–556

    PubMed  CAS  Google Scholar 

  • Rogers EH, Chernoff N, Kavlock RJ (1981) The teratogenic potential of cacodylic acid in the rat and mouse. Drug Chem Toxicol 4:49–61

    PubMed  CAS  Google Scholar 

  • Rosen BP, Weigel U, Monticello R, Edwards BPF (1991) Molecular analysis of an anion pump. Arch Biochem Biophys 284:381–385

    PubMed  CAS  Google Scholar 

  • Rowland IR, Davies MJ (1981) In vitro metabolism of inorganic arsenic by the gastro-intestinal microflora of the rat. J Appl Toxicol 1:278–283

    PubMed  CAS  Google Scholar 

  • Rudnai P, Borzsonyi M (1980) Carcinogenic effect of arsenic trioxide in transplacentally and neonatally treated CFLP mice. Nat Sci 2:11–18

    CAS  Google Scholar 

  • Scott N, Hatlelid KM, MacKenzie NE, Carter DE (1993) Reaction of arsenic(III) and arsenic(V) species with glutathione. Chem Res Toxicol 6:102–106

    PubMed  CAS  Google Scholar 

  • Shibata Y, Yoshinaga J, Morita M (1993) Detection of arsenobetaine in human blood. In: Book of abstracts, 6th international symposium on environmental and industrial arsenic, Kawasaki, Japan, p 12

    Google Scholar 

  • Silver S, Ji G, Broer S, Dey S, Dou D, Rosen BP (1993a) Orphan enzyme or patriarch of a new tribe:the arsenic resistance ATPase of bacterial plasmids. Mol Microbiol 8:637–642

    CAS  Google Scholar 

  • Silver S, Nucifora G, Phung LT (1993b) Human Menkes X-chromosome disease and the staphylococcal cadmium-resistance ATPase:a remarkable similarity in protein sequence. Mol Microbiol 10:7–12

    CAS  Google Scholar 

  • Smith AH, Hopenhayn-Rich C, Bates MN, Goeden HM, Hertz-Picciotto I, Duggan HM, Wood R, Kosnett MJ, Smyth MT (1992) Cancer risks from arsenic in drinking water. Environ Health Perspect 97:259–267

    PubMed  CAS  Google Scholar 

  • Stevens JT, DiPasquale LC, Farmer JD (1979) The acute inhalation toxicology of the technical grade organoarsenical herbicides, cacodylic acid and disodium methanearsonic acid: a route comparison. Bull Environ Contam Toxicol 21:304–311

    PubMed  CAS  Google Scholar 

  • Takahashi K, Yamauchi H, Yamato N, Yamamura Y (1988) Methylation of arsenic trioxide in hamsters with liver damage induced by long-term administration of carbon tetrachloride. Appl Organomet Chem 2:309–314

    Google Scholar 

  • Takahashi K, Yamauchi H, Mashiko M, Yamamura Y (1990) Effect of S-adenosyl methionine on methylation of inorganic arsenic. Nippon Eiseigaku Zasshi 45:613–618

    PubMed  CAS  Google Scholar 

  • Tam GKH, Charbonneau SM, Bryce F, Lacroix G (1978) Separation of arsenic metabolites in dog plasma and urine following intravenous injection of 74As. Anal Biochem 86:505–511

    PubMed  CAS  Google Scholar 

  • Tam GKH, Charbonneau SM, Bryce F, Pomroy C, Sandi E (1979) Metabolism of inorganic arsenic (74As) in humans following oral ingestion. Toxicol Appl Pharmacol 50:319–322

    PubMed  CAS  Google Scholar 

  • Tam GKH, Charbonneau SM, Bryce F, Sandi E (1982) Excretion of a single oral dose of fish-arsenic in man. Bull Environ Contam Toxicol 28:669–673

    PubMed  CAS  Google Scholar 

  • Tezuka M, Hanioka K-I, Yamanaka K, Okada S (1993) Gene damage induced in human alveolar type II (L-132) cells by exposure to dimethylarsinic acid. Biochem Biophys Res Commun 1991:1178–1183

    Google Scholar 

  • Thomas DJ (1994) Arsenic toxicity in humans:research problems and prospects. Environ Geochem Health (in press)

    Google Scholar 

  • Thompson DJ (1993) A chemical hypothesis for arsenic methylation in mammals. Chem Biol Interact 88:89–114

    PubMed  CAS  Google Scholar 

  • Tseng W-P (1989) Blackfoot disease in Taiwan: a 30-year follow-up study. Angiology 40:547–558

    PubMed  CAS  Google Scholar 

  • Tseng W-P, Chu HM, How SW, Fong JM, Lin CS, Yeh S (1968) Prevalence of skin cancer in an endemic area of chronic arsenicism in Taiwan. J Natl Cancer Inst 40:453–463

    PubMed  CAS  Google Scholar 

  • US Environmental Protection Agency (1988) Special report on ingested inorganic arsenic-skin cancer; nutritional essentiality. Risk Assessment Forum, EPA/625/3-87/013, Washington DC

    Google Scholar 

  • Vahter M (1981) Biotransformation of trivalent and pentavalent inorganic arsenic in mice and rats. Environ Res 25:286–293

    PubMed  CAS  Google Scholar 

  • Vahter M (1986) Environmental and occupational exposure to inorganic arsenic. Acta Pharmacol Toxicol 59 [Suppl 7]:31–34

    CAS  Google Scholar 

  • Vahter M, Envall J (1983) In vivo reduction of arsenate in mice and rabbits. Environ Res 32:14–24

    PubMed  CAS  Google Scholar 

  • Vahter M, Marafante E (1985) Reduction and binding of arsenate in marmoset monkeys. Arch Toxicol 57:119–124

    PubMed  CAS  Google Scholar 

  • Vahter M, Marafante E (1987) Effects of low dietary intake of methionine, choline or proteins on the biotransformation of arsenite in the rabbit. Toxicol Lett 37:41–46

    PubMed  CAS  Google Scholar 

  • Vahter M, Marafante E, Lindgren A, Dencker L (1982) Tissue distribution and subcellular binding of arsenic in marmoset monkeys after injection of 74As arsenite. Arch Toxicol 51:65–77

    CAS  Google Scholar 

  • Vahter M, Marafante E, Dencker L (1983) Metabolism of arsenobetaine in mice, rats and rabbits. Sci Total Environ 30:197–211

    PubMed  CAS  Google Scholar 

  • Vulpe C, Levinson B, Whitney S, Packman S, Gitscher J (1993) Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. Nature Genet 3:7–13

    PubMed  CAS  Google Scholar 

  • Wang H-F, Lee T-C (1993) Glutathione S-transferase pi facilitates the excretion of arsenic from arsenic resistant Chinese hamster ovary cells. Biochem Biophys Res Commun 192:1093–1099

    PubMed  CAS  Google Scholar 

  • Weinshilboum R (1988) Pharmacogenetics of methylation:Relationship to drug metabolism. Clin Biochem 21:201–210

    PubMed  CAS  Google Scholar 

  • Wu J, Rosen BP (1993) Metalloregulated expression of the ars operon. J Biol Chem 268:52–58

    PubMed  CAS  Google Scholar 

  • Wu MM, Kuo TL, Hwang YH, Chen CJ (1989) Dose-response relation between arsenic concentration in well water and mortality from cancer and cardiovascular disease. Am J Epidemiol 130:1123–1132

    PubMed  CAS  Google Scholar 

  • Yamamura Y (1993) Toxicity and metabolism of alkylarsine. In:Book of abstracts, 6th international symposium on environmental and industrial arsenic. Kawasaki, Japan, p 4

    Google Scholar 

  • Yamamura Y, Yamauchi H (1980) Arsenic metabolites in hair, blood and urine in workers exposed to arsenic trioxide. Ind Health 18:203–210

    PubMed  CAS  Google Scholar 

  • Yamanaka K, Hasegawa A, Sawamura R, Okada S (1989) Dimethylated arsenics induce DNA strand breaks in lung via the production of acitve oxygen in mice. Biochem Biophys Res Commun 165:43–50

    PubMed  CAS  Google Scholar 

  • Yamanaka K, Hoshino H, Sawamura R, Hasegawa A, Okada S (1990) Induction of DNA damage by dimethylarsine, a metabolite of inorganic arsenics, is for the major part likely due to its peroxyl radical. Biochem Biophys Res Commun 168:58–64

    PubMed  CAS  Google Scholar 

  • Yamanaka K, Hasegawa A, Sawamura R, Okada S (1991) Cellular responses to oxidative damage in lung induced by the administration of dimethylarsinic acid, a metabolite of inorganic arsenics, in mice. Toxicol Appl Pharmacol 108:205–215

    PubMed  CAS  Google Scholar 

  • Yamanaka K, Tezuka M, Kato K, Hasegawa A, Okada S (1993) Crosslink formation between DNA and nuclear proteins by in vivo exposure of cells to dimethylar-sinic acid. Biochem Biophys Res Commun 191:1184–1191

    PubMed  CAS  Google Scholar 

  • Yamauchi H, Yamamura Y (1979) Urinary inorganic arsenic and methylarsenic excretion following arsenate-rich seaweed ingestion. Jpn J Ind Health 21:47–54

    CAS  Google Scholar 

  • Yamauchi H, Yamamura Y (1984a) Metabolism and excretion of orally administered dimethylarsinic acid in the hamster. Toxicol Appl Pharmacol 74:134–140

    CAS  Google Scholar 

  • Yamauchi H, Yamamura Y (1984b) Metabolism and excretion of orally ingested trimethylarsenic in man. Bull Environ Contam Toxicol 32:682–687

    CAS  Google Scholar 

  • Yamauchi H, Yamamura Y (1985) Metabolism and excretion of orally administered arsenic trioxide in the hamster. Toxicology 34:113–121

    PubMed  CAS  Google Scholar 

  • Yamauchi H, Yamamura Y (1986) Metabolism and excretion of orally and intra-peritoneally administered gallium arsenide in the hamsters. Toxicology 40:237–246

    PubMed  CAS  Google Scholar 

  • Yamauchi H, Yamato N, Yamamura Y (1988) Metabolism and excretion of orally and intraperitoneally administered methylarsonic acid in the hamster. Bull Environ Contam Toxicol 40:280–286

    PubMed  CAS  Google Scholar 

  • Yamauchi H, Takahashi K, Mashiko M, Yamamura Y (1989) Biological monitoring of arsenic exposure of gallium arsenide- and inorganic arsenic-exposed workers by determination of inorganic arsenic and its metabolites in urine and hair. Am Ind Hyg Assoc J 50:606–612

    PubMed  CAS  Google Scholar 

  • Yamauchi H, Kaise T, Takahashi K, Yamamura Y (1990) Toxicity and metabolism of trimethylarsine in mice and hamster. Fund Appl Toxicol 14:399–407

    CAS  Google Scholar 

  • Yamauchi H, Takahashi K, Mashiko M, Saitoh J, Yamamura Y (1992) Intake of different chemical species of dietary arsenic by the Japanese and their blood and urinary arsenic levels. Appl Organomet Chem 6:383–388

    CAS  Google Scholar 

  • Zeisel SH (1988) “Vitamin-like” molecules (A) choline. In: Shils ME, Young VR (eds) Modern nutrition in health and disease, 7th den. Lea and Febiger, Philadelphia, p 440

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Styblo, M., Delnomdedieu, M., Thomas, D.J. (1995). Biological Mechanisms and Toxicological Consequences of the Methylation of Arsenic. In: Goyer, R.A., Cherian, M.G. (eds) Toxicology of Metals. Handbook of Experimental Pharmacology, vol 115. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79162-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79162-8_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79164-2

  • Online ISBN: 978-3-642-79162-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics