Skip to main content

Metal Mutagenesis

  • Chapter
Book cover Toxicology of Metals

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 115))

Abstract

Interest in the mutagenicity of metal compounds has its origin in the search for a reasonable mechanism for the carcinogenicity of some metal compounds. Epidemiological studies have provided evidence that occupational and environmental exposures to some metal compounds (arsenic, beryllium, cadmium, hexavalent chromium, nickel, and possibly lead and mercury) are associated with human cancers (IARC 1973, 1980, 1987, 1993; MAgos 1991). In addition, there are a number of other metal compounds which induce tumors in animals, but for which the human data is not available (IARC 1980). The recent identification and cloning of mutant oncogenes and tumor suppressor genes provides convincing evidence that mutational events in somatic cells are involved in the conversion of normal cells to malignancy. Thus, understanding the types of genetic changes induced by metal compounds should yield important clues for understanding their carcinogenic effects as well as other toxic effects which have a genotoxic component.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbracchio MP, Heck JD, Costa M (1982) The phagocytosis and transforming activity of crystalline metal sulfide particles are related to their negative surface charge. Carcinogenesis 3:175–180

    PubMed  CAS  Google Scholar 

  • Aiyar J, Berkovits HJ, Floyd RA, Wetterhahn EK (1991) Reaction of chromium(VI) with glutathione or with hydrogen peroxide: identification of reactive intermediates and their role in chromium(VI)-induced DNA damage. Environ Health Perspect 92:53–62

    PubMed  CAS  Google Scholar 

  • Amacher DE, Paillet SC (1980) Induction of trifluorothymidine resistant mutants by metal ions in L5178Y/TK+/− cells. Mutat Res 78:279–288

    PubMed  CAS  Google Scholar 

  • Ames B (1989) Endogenous DNA damage as related to cancer and aging. Mutat Res 214:41–46

    PubMed  CAS  Google Scholar 

  • Aposhian HV (1989) Biochemical toxicology of arsenic. Rev Biochem Toxicol 10:265–299

    CAS  Google Scholar 

  • Arlauskas A, Baker SU, Bonin AM, Tandon RK, Crisp PT, Ellis J (1985) Mutagenicity of metal ions in bacteria. Environ Res 36:379–388

    PubMed  CAS  Google Scholar 

  • Arrouijal FZ, Hildebrand HF, Vophi H, Marzin D (1990) Genotoxic activity of nickel subsulphide α-Ni3S2. Mutagenesis 5:583–589

    PubMed  CAS  Google Scholar 

  • Ashby J, Ishidate JR, Stoner GD, Morgan MA, Ratpan F, Callander RD (1990) Studies on the genotoxicity of beryllium sulfate in vitro and in vivo. Mutat Res 240:217–225

    PubMed  CAS  Google Scholar 

  • Bassendowska-Karska E, Zawadzkak-Kos M (1987) Cadmium sulfate does not induce sister chromatid exchanges in human lymphocytes in vitro. Toxicol Lett 37:173–174

    PubMed  CAS  Google Scholar 

  • Basu AK, Loechler EL, Leadon SA, Essigman JM (1989) Genetic effects of thymine glycol: site specific mutagenesis and molecular modeling studies. Proc Natl Acad Sci USA 86:7677–7681

    PubMed  CAS  Google Scholar 

  • Beckman RA, Mildvan AS, Loeb LA (1985) On the fidelity of DNA replication: manganese mutagenesis in vitro. Biochemistry 24:5810–5817

    PubMed  CAS  Google Scholar 

  • Bennicelli C, Camoirano A, Petruzzelli S, Zanacchi P, DeFlora S (1983) High sensitivity of Salmonella TA102 in detecting hexavalent chromium mutagenicity and its reversal by liver and lung preparations. Mutat Res 122:1–5

    PubMed  CAS  Google Scholar 

  • Beyersmann D, Hartwig A (1992) The genetic toxicology of cobalt. Toxicol Appl Pharmacol 115:137–145

    PubMed  CAS  Google Scholar 

  • Beyersmann D, Köster A, Buttner B (1984) Model reactions of chromium compounds with mammalian and bacterial cells. Toxicol Environ Chem 8:279–286

    CAS  Google Scholar 

  • Bhanot OS, Solomon JJ (1994) The roleof mutagenic metal ions in mediating in vitro mispairing by alkylpyrimidines. Environ Health Perspect (in press)

    Google Scholar 

  • Bhattacharyya D, Boulden AM, Foote RS Mitra S (1988) Effect of plyvalent metal ions on the reactivity of human O6-methylguanine-DNA methyltransferase. Carcinogenesis 9:683–685

    PubMed  CAS  Google Scholar 

  • Bianchi V, Levis AG (1987) Recent advances in chromium genotoxicity. Toxicol Environ Chem 15:1–24

    CAS  Google Scholar 

  • Bianchi V, Debetto P, Zantedeschi A, Levis AG (1982) Effects of hexavalent chromium on the adenylate pool of hamster fibroblasts. Toxicology 25:19–30

    PubMed  CAS  Google Scholar 

  • Bianchi V, Celotti L, Lanfranchi G, Majone F, Marin G, Montaldi A, Sponza G, Tamino G, Vernier P, Zantedeschi A, Levis AG (1983) Genetic effects of chromium compounds. Mutat Res 117:279–300

    PubMed  CAS  Google Scholar 

  • Biederman KA, Landolph JR (1987) Induction of anchorage independence in human diploid foreskin fibroblasts by carcinogenic metal salts. Cancer Res 47:3815–3823

    Google Scholar 

  • Biederman KA, Landolph JR (1990) Role of valence state and solubility of chromium compounds on induction of cytotoxicity, mutagenesis and anchorage independence in diploid fibroblasts. Cancer Res 50:7835–7842

    Google Scholar 

  • Biggart NW, Costa M (1986) Assessment of the uptake and mutagenicity of nickel chloride in Salmonella tester strains. Mutat Res 175:209–215

    PubMed  CAS  Google Scholar 

  • Biggart NW, Gallick GE, Murphy EC (1987) Nickel-induced heritable alterations in retroviral transforming gene expression. J Virol 61:2378–2388

    PubMed  CAS  Google Scholar 

  • Borges KM, Wetterhahn KE (1989) Chromium cross-links glutathione and cysteine to DNA. Carcinogenesis 10:2165–2168

    PubMed  CAS  Google Scholar 

  • Borges KM, Boswell JS, Liebross RH, Wetterhahn KE (1991) Activation of chromium (VI) by thiols results in chromium ( V) formation, chromium binding to DNA and altered DNA conformation. Carcinogenesis 12:551–561

    Google Scholar 

  • Bracken WM, Klaassen CD (1987) Induction of metallothionein in rat primary hepatocyte cultures; evidence for direct and indirect induction. J Toxicol Environ Health 22:163–174

    PubMed  CAS  Google Scholar 

  • Brooks AL, Griffith WC, Johnson NF, Finch GL, Cuddihy RG (1989) The induction of chromosome damage in CHO cells by beryllium and radiation given alone and in combination. Radiat Res 120:494–507

    PubMed  CAS  Google Scholar 

  • Cantoni O, Christie NT, Swann A, Drath DB, Costa M (1984) Mechanism of HgCl2 cytotoxicity in cultured mammalian cells. Mol Pharmacol 26:360–368

    PubMed  CAS  Google Scholar 

  • Casto BC, Meyer A, DiPaolo FA (1979) Enhancement of viral transformation for evaluation of the carcinogenic or mutagenic potential of inorganic lead. Cancer Res 39:193–197

    PubMed  CAS  Google Scholar 

  • Cerutti PH (1985) Pro-oxidant states and tumor promotion. Science 227:375–381

    PubMed  CAS  Google Scholar 

  • Chiocca SM, Sterner DA, Biggart NW, Murphy EC (1991) Nickel mutagenesis: alteration of the MiSV40110 thermosensitive splicing phenotype by a nickel-induced duplication of the 3′ splice-site. Mol Carcinog 4:61–71

    PubMed  CAS  Google Scholar 

  • Christie NT, Costa M (1983) In vitro assessment of the toxicity of metal compounds. III. Effects of metals on DNA struture and function in intact cells. Biol Trace Elem Res 5:55

    CAS  Google Scholar 

  • Christie NT, Costa M (1984) In vitro assessment of the toxicity of metal compounds. IV. Disposition of the metals in cells: interactions with membranes glutathione, metallothionein and DNA. Biol Trace Elem Res 6:139–158

    CAS  Google Scholar 

  • Chrisitie NT, Katsifis SP (1990) Nickel carcinogenesis. In: Foulkes EC (ed) Biological effects of heavy metals, vol 2. CRC, Boca Raton, pp 95–128

    Google Scholar 

  • Christie NT, Cantoni O, Sugiyama M, Cattabeni F, Costa M (1986) Differences in the effcts of Hg(II) on DNA repair induced in Chinese hamster ovary cells by ultraviolet or X-rays. Mol Pharmacol 29:173–178

    PubMed  CAS  Google Scholar 

  • Christie NT, Chin YE, Snow ET, Cohen MD (1991) Kinetic analysis of Ni2+-effects on DNA replication by polymerase α. J Cell Biochem 15D: 114

    Google Scholar 

  • Christie NT, Tummolo DM, Klein CB, Rossman TG (1992) The role of Ni(II) in mutation. In: Nieboer E, Antio A (eds) Nickel and human health: current perspectives. Wiley, New York, pp 305–317

    Google Scholar 

  • Ciccarelli RB, Wetterhahn KE (1985) In vitro interaction of 63-nickel(II) with chromatin and DNA from rat kidney and liver nuclei. Chem Biol Interact 52:347–360

    PubMed  CAS  Google Scholar 

  • Cohen M, Klein C, Costa M (1992) Forward mutations and DNA-protein crosslinks induced by ammonium metavanadate in cultured cells. Mutat Res 269:141–148

    PubMed  CAS  Google Scholar 

  • Connett PH, Wetterhahn KE (1983) Metabolism of the carcinogenic Chromate by cellular constituents. Struct Bond 54:93–124

    CAS  Google Scholar 

  • Conway K, Costa M (1989) Nonrandom chromosomal alterations in nickel-transformed Chinese hamster embryo cells. Cancer Res 49:6032–6038

    PubMed  CAS  Google Scholar 

  • Coogan TP, Latta DM, Snow ET, Costa M (1988) Toxicity and carcinogenicity of nickel compounds. CRC Crit Rev Toxicol 19:341–394

    Google Scholar 

  • Coogan TP, Bare RM, Waalkes MP (1992) Cadmium-induced DNA strand damage in cultured liver cells: reduction in cadmium genotoxicity following zinc pre-treatment. Toxicol Appl Pharmacol 113:227–233

    PubMed  CAS  Google Scholar 

  • Costa M, Mollenhauer HH (1980) Carcinogenic activity of particulate nickel compounds is proportional to their cellular uptake. Science 209:515–517

    PubMed  CAS  Google Scholar 

  • Costa M, Simmons-Hansen J, Bedrossian CWM, Bonura J, Caprioli RM (1981) Phagocytosis, cellular distribution and carcinogenic activity of particulate nickel compounds in cell culture. Cancer Res 41:2868

    PubMed  CAS  Google Scholar 

  • Costa M, Cantoni O, de Mars M, Swartzendruber DE (1982) Toxic metals produce an S phase-specific cell cycle block. Res Commun Chem Path Pharmacol 38:405–419

    CAS  Google Scholar 

  • Costa M, Christie NT, Cantoni O, Zelikoff J, Wang XW, Rossman TG (1991) DNA damage by mercury compound. In: Imura N, Clarkson T (eds) Advances in mercury toxicology. Plenum, New York, pp 255–273

    Google Scholar 

  • Cupo DY, Wetterhahn KE (1985) Modification of chromium (VI)-induced DNA damage by glutathione and cytochromes P-450 in chicken embryo hepatocytes. Proc Natl Acad Sci USA 82:6755–6759

    PubMed  CAS  Google Scholar 

  • Curle DC, Ray M, Persaud TVN (1987) In vivo evaluation of teratogensis and cytogenetic changes following methylmercuric chloride treatment. Anat Record 2129:286–295

    Google Scholar 

  • DeFlora S, Wetterhahn KE (1989) Mechanisms of chromium metabolism and genotoxicity. Life Chem Rep 7:169–244

    CAS  Google Scholar 

  • DeFlora S, Bagnasco M, Serra D, Zanucchi P (1990) Genotoxicity of chromium compounds: a review. Mutat Res 238:99–172

    CAS  Google Scholar 

  • DeMéo M, Laget M, Castegnaro M, Dumenil G (1991) Genotoxic activity of potassium permanganate in acidic solutions. Mutat Res 260:295–306

    Google Scholar 

  • DeMarini D, Brockman HE, deSerres FJ, Evans HH, Stankowski LF, Hsie AW (1989) Specific-locus mutations induced in eukaryotes (especially in mammalian cells) by radiation and chemicals: a perspective. Mutat Res 220:11–29

    PubMed  CAS  Google Scholar 

  • Demple B (1990) Oxidative DNA damage: repair and inducible cellular responses. In: Mendelsohn ML, Albertini RJ (eds) Mutation and the environment, part A. Wiley-Liss, New York, pp 157–167

    Google Scholar 

  • DiPaolo JA, Casto BLC (1979) Quantitative studies of in vitro morphological transformation of Syrian hamster cells by inorganic metal salts. Cancer Res 39:1008–1313

    PubMed  CAS  Google Scholar 

  • DiPaolo JA, Nelson RL, Casto BC (1978) In vitro neoplastic transformation of SHE cells by lead acetate and its relevance to environmental carcinogenesis. JNCI 38:452–455

    CAS  Google Scholar 

  • Dizdaroglu M, Rao G, Halliwell B, Tajecwski E (1991) Damage to the bases in mammalian chromation by hydrogen peroxide in the presence of ferric and cupric ions. Arch Biochem Biophys 285:317–324

    PubMed  CAS  Google Scholar 

  • Dubins JS, LaVelle JM (1986) Nickel(II) genotoxicity: potentiation of mutagenesis of simple alkylating agents. Mutat Res 162:187–199

    PubMed  CAS  Google Scholar 

  • Dunkel VC, Zeiger E, Brusick D, McÇJoy E, McGregor D, Mortelmans K, Rosenkranz HS, Simmon VF (1984) Reproducibility of microbial mutagenicity assays. I. Tests with Salmonella typhimurium and Escherichia coli using a standardized protocol. Environ Mutagen 2(6):1–254

    Google Scholar 

  • Fenwick RG (1980) Reversion of mutation affecting the molecular weight of HGPRT: intragenic suppression and localization of X-linked genes. Somat Cell Genet 6:477–494

    PubMed  CAS  Google Scholar 

  • Fiskesjo G (1979) Two organic mercury compounds tested for mutagenicity in mammalian cells by use of the cell line V79-4. Hereditas 90:103–109

    PubMed  CAS  Google Scholar 

  • Gebhart E, Rossman TG (1991) Mutagenicity, carcinogenicity, teratogenicity. In: Merian E (ed) Metals and their compounds in the environment. VCH, Weinheim, pp 617–641

    Google Scholar 

  • Glatt H, Protic-Sablijic M, Oesch F (1983) Mutagenicity of glutathione and cysteine in the Ames test. Science 220:961–963

    PubMed  CAS  Google Scholar 

  • Goncharova EI, Rossman TG (1994) A role for metallothionein and zinc in spontaneous mutagenesis. Cancer Res (in press)

    Google Scholar 

  • Goodman MF, Keener S, Guidotti S (1983) On the enzymatic basis for mutagenesis by manganese. J Biol Chem 258:3469–3475

    PubMed  CAS  Google Scholar 

  • Goth-Goldstein R (1980) Inability of Chinese hamster ovary cells to excise O6-alkylguanine. Cancer Res 40:2623–2624

    PubMed  CAS  Google Scholar 

  • Hansen K, Stern RM (1984) A surver of metal-induced mutagenicity in vitro and in vivo. J Am Coll Toxicol 3:381–430

    CAS  Google Scholar 

  • Harmon LS, Motley C, Mason RP (1984) Free radical metabolites of L-cysteine oxidation. J Biol Chem 159:5606–5611

    Google Scholar 

  • Hartwig A, Beyersmann D (1989a) Comutagenicity and inhibition of DNA repair by metal ions in mammalian cells. Biol Trace Elem Res 21:359–365

    CAS  Google Scholar 

  • Hartwig A, Beyersmann D (1989b) Enhancement of UV-induced mutagenesis and sister chromatid exchanges by nickel ions in V79 cells: evidence for the inhibition of DNA repair. Mutat Res 217:65–73

    CAS  Google Scholar 

  • Hartwig A, Schlepegrell R, Beyersmann D (1990) Indirect mechanism of lead-induced genotoxicity in cultured mammalian cells. Mutat Res 241:75–82

    PubMed  CAS  Google Scholar 

  • Higinbotham KG, Rice JM, Diwan BA, Kasprzak KS, Reed CD, Perantoni AO (1992) GGT to GTT transversions in codon 12 of the K-ras oncogene in rat renal sarcomas induced with nickel subsulfide or nickel subsulfide/iron are consistent with oxidative damage to DNA. Cancer Res 52:4747–4751

    PubMed  CAS  Google Scholar 

  • Hitzfeld B, Planas-Bohne F, Taylor D (1989) The effect of lead on protein and DNA metabolism of normal and lead-adapted rat kidney cells in culture. Biol Trace Elem Res 21:87–95

    PubMed  CAS  Google Scholar 

  • Howard V, Leonard B, Moody W, Kochlat TS (1991) Induction of chromosome changes by metal compounds in cultured CHO cells. Toxicol Lett 56:179–186

    PubMed  CAS  Google Scholar 

  • IARC (1973) Arsenic and inorganic arsenic compounds. I ARC Monogr Eval Carcinog Risk Chem Hum 2

    Google Scholar 

  • IARC (1980) Some metals and metallic compounds. IARC Monogr Eval Carcinog Risk Chem Hum 23

    Google Scholar 

  • IARC (1987) Overall evaluations of carcinogenicity: an updating of I ARC monographs volumes 1–42, supplement 7. International Agency for Research on Cancer, Lyon

    Google Scholar 

  • IARC (1987) Overall evaluations of carcinogenicity: an updating of I ARC monographs volumes 1–42, supplement 7. International Agency for Research on Cancer, Lyon

    Google Scholar 

  • IARC (1993) Beryllium, cadmium, mercury and exposures in the glass manufacturing industry. IARC Monogr Eval Carcinog Risk Chem Hum

    Google Scholar 

  • Jacobson KB, Turner JE (1980) The interaction of cadmium and certain other metal ions with proteins and nucleic acids. Toxicology 16:1–37

    PubMed  CAS  Google Scholar 

  • Jha AN, Noditi M, Nilsson R, Natarajan AT (1992) Genotoxic effects of sodium arsenite on human cells. Mutat Res 284:215–221

    PubMed  CAS  Google Scholar 

  • Joardar M, Sharma A (1990) Comparison of clastogenicity of inorganic Mn administered in cationic and anionic forms in vivo. Mutat Res 240:159–163

    PubMed  CAS  Google Scholar 

  • Kanematsu N, Hara M, Kada T (1980) Rec assay and mutagenicity studies on metal compounds. Mutat Res 77:109–116

    PubMed  CAS  Google Scholar 

  • Kargacin B, Klein CB, Costa M (1993) Mutagenic response of nickel oxides and nickel sulfides in Chinese hamster V79 cell lines at the xanthine-guanine phosphoribosyl transferase locus. Mutat Res 300:63–72

    PubMed  CAS  Google Scholar 

  • Kasprzak KS, Gabryel P, Jarczewska K (1983) Carcinogenicity of nickel(II) hydroxides and nickel(II) sulfate in Wistar rats and its relation to the in vitro dissolution rates. Carcinogenesis 4:275–279

    PubMed  CAS  Google Scholar 

  • Kawanishi S, Inoue S, Sano SJ (1986) Mechanism of DNA cleavage induced by sodium Chromate (VI) in the presence of hydrogen peroxide. Biol Chem 261:5952–5958

    CAS  Google Scholar 

  • Kazantzis G (1987) The mutagenic and carcinogenic effects of cadmium: an update. Toxicol Environ Chem 15:83–100

    CAS  Google Scholar 

  • Kazantzis G, Lilly LJ (1986) Mutagenic and carcinogenic effects of metals. In: Friberg L (ed) Handbook on the toxicology of metals, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Keyse SM, Tyrrell RM (1989) Heme oxygenase is the major 32Kda stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide and sodium arsenite. Proc Natl Acad Sci USA 86:99–103

    PubMed  CAS  Google Scholar 

  • Kier LE, Brusick DJ, Auletta AE, von Halle ES, Brown MM, Simmon VF, Dunkel V, McCann J, Mortelmans K, Prival M, Rao TK, Ray V (1986) The S. typhimurium/mammalia microsomal assay. A report of the E.S. EPA Gene-Tox Program. Mutat Res 168:69–240

    PubMed  CAS  Google Scholar 

  • Klein CB, Rossman TG (1990) Transgenic Chinese hamster V79 cell lines which exhibit variable levels of gpt mutagenesis. Environ Mol Mutagen 16:1–12

    PubMed  Google Scholar 

  • Klein CB, Snow ET (1993) Localization of the gpt sequence in transgenic G12 cells via fluorescent in situ hybridization. Environ Mol Mutagen 21:35a

    Google Scholar 

  • Klein CB, Frenkel K, Costa M (1991a) The role of oxidative processes in metal carcinogenesis. Chem Res Toxicol 4:592–604

    CAS  Google Scholar 

  • Klein CB, Conway K, Wang XW, Bhamra RK, Lin X, Cohen MD, Annab L, Barrett JC, Costa M (1991b) Senescence of nickel-transformed cells by an X chromosome: possible epigenetic control. Science 251:796–799

    CAS  Google Scholar 

  • Klein CB, Su L, Rossman TG, Snow ET (1993) Transgenic gpt+ V79 cell lines differ in their mutagenic response to clastogens. Mutat Res 304:217–228

    Google Scholar 

  • Klein CB, Kargacin B, Su L, Cosentino S, Snow ET, Costa M (1994) Metal mutagenesis in transgenic Chinese hamster cell lines. Environ Health Perspect (in press)

    Google Scholar 

  • Kortenkamp A, Beyersman D, O’Brien P (1987) Uptake of chromium(III) complexes by erythrocytes. Toxicol Environ Chem 14:23

    CAS  Google Scholar 

  • Kortenkamp A, Ozolins Z, Beyersmann D, O’Brien P (1989) Generation of PM2 DNA breaks in the course of reduction of chromium(VI) by glutathione. Mutation Res 216:19–26

    PubMed  CAS  Google Scholar 

  • Kortenkamp A, Oetken G, Beyersmann D (1990) The DNA cleavage induced by chromium(V) complex and by chromium and glutathione is mediated by activated oxygen species. Mutation Res 232:155–161

    PubMed  CAS  Google Scholar 

  • Kunz BA, Kohalmi SE (1991) Modulation of mutagenesis by deoxyribonucleoside levels. Annu Rev Genet 25:339–359

    PubMed  CAS  Google Scholar 

  • Kuroda K, Endo G, Okamoto A, Yoo YLS, Horiguchi S-I (1991) Genotoxicity of beryllium, gallium and antimony in short-term assays. Mutat Res 264:163–170

    PubMed  CAS  Google Scholar 

  • Lake LM, O’Cheskey SO, Masuji H, Gerschenson LE (1980) Isolation of lead-resistant cells from an established rat glioma cell line. Chem Biol Interact 30:235–240

    Google Scholar 

  • LaVelle JM (1986) Chromium(VI) comutagenesis: characterization of the interaction of K2CrO4 with azide. Environ Mutagen 8:717–725

    PubMed  CAS  Google Scholar 

  • Larramendy ML, Popescu NC, DiPaolo JA (1981) Induction by inorganic metal salts of sister chromatid exchanges and chromosome aberrations in human and Syrian hamster cell strains. Environ Mutagen 3:597–606

    CAS  Google Scholar 

  • Larson RA, Lloyd RE, Marley KA, Tuveson RW (1992) Ferric ion-photosensitized damage to DNA by hydroxyl and non-hydroxyl radical mechanisms. J Photochem Photobiol Biol 14:345–357

    CAS  Google Scholar 

  • Lee TC, Huang RY, Jan KY (1985) Sodium arsenite enhances the cytotoxicity clastogenicity and 6-thioguanine-resistant mutagenicity of ultraviolet light in Chinese hamster ovary cells. Mutat Res 148:83–89

    PubMed  CAS  Google Scholar 

  • Lee TC, Tanaka N, Lamb WP, Gilmer TM, Barrett JC (1989) Induction of gene amplification by arsenic. Science 241:79–81

    Google Scholar 

  • Lee YW, Christie NT (1993) Analysis of 6-TG resistant cells induced by insoluble nickel compounds in hamster G12 cells. Environ Mol Mutatgen 21 [Suppl 22]:39

    Google Scholar 

  • Lee YW, Pons C, Tummolo DM, Klein CB, Rossman TG, Christie NT (1993) Mutagenicity of soluble and insoluble nickel compounds at the gpt locus in G12 Chinese hamster cells. Environ Mol Mutagen 21:365–371

    PubMed  Google Scholar 

  • Lee-Chen SF, Yu CT, Jan KY (1992) Effect of arsenite on the DNA repair of UV-irradiated Chinese hamster ovary cells. Mutagenesis 7:51–55

    PubMed  CAS  Google Scholar 

  • Leonard A (1984) Recent advances in arsenic mutagenesis and carcinogenesis. Toxicol Environ Chem 7:241–250

    CAS  Google Scholar 

  • Leonard A, Lauwerys RR (1980) Carcinogenicity and mutagenicity of chromium. Mutat Res 76:227–239

    PubMed  CAS  Google Scholar 

  • Leonard A, Lauwerys R (1987) Mutagenicity, carcinogenicity and teratogenicity of beryllium. Mutat Res 186:35–42

    PubMed  CAS  Google Scholar 

  • Leonard A, Jacquet P, Lauwerys RR (1983) Mutagenicity and teratogenicity of mercury compounds. Mutat Res 114:1–18

    PubMed  CAS  Google Scholar 

  • Leonard A, Gerber GB, Leonard F (1986) Mutagenicity, carcinogenicity and teratogenicity of zinc. Mutat Res 168:343–353

    PubMed  CAS  Google Scholar 

  • Levinson W, Oppermann H, Jackson J (1980) Transition series metals and sulfhydryl reagents induce the synthesis of four proteins in eukaryotic cells. Biochim Biophys Acta 606:170–180

    PubMed  CAS  Google Scholar 

  • Li J-H, Rossman TG (1989a) Mechanism of comutagenesis of sodium arsenite with N-methyl-N-nitrosourea. Biol Trace Elem Res 21:373–381

    CAS  Google Scholar 

  • Li J-H, Rossman TG (1989b) Inhibition of DNA ligase activity by arsenite: a possible mechanism of its comutagenesis. Mol Toxicol 2:1–9

    CAS  Google Scholar 

  • Li J-H, Rossman TG (1991) Comutagenesis of sodium arsenite with ultraviolet radiation in Chinese hamster V79 cells. Biol Metals 4:197–200

    CAS  Google Scholar 

  • Lin X, Zhuang Z, Costa M (1992) Analysis of residual amino acid-DNA crosslinks induced in intact cells by nickel and chromium compounds. Carcinogenesis 13:1763–1768

    PubMed  CAS  Google Scholar 

  • Lindahl T (1982) DNA repair enzymes. Annu Rev Biochem 51:61–87

    PubMed  CAS  Google Scholar 

  • Lloyd RE, Larson RA, Adair TL, Tuveson RW (1993) Cu(II) sensitizes pBR322 Plasmid DNA to inactivation by UV-B (280–315 nm). Photochem Photobiol 57:1011–1017

    PubMed  CAS  Google Scholar 

  • Luke MZ, Hamilton L, Hollocher TC (1975) Beryllium-induced misincorporation by a DNA-polymerase: a possible factor in beryllium toxicity. Biochem Biophys Res Commun 62:497–501

    PubMed  CAS  Google Scholar 

  • Maehle L, Metcalf RA, Ryberg D, Bennett WP, Harris CC, Haugen A (1992) Altered p53 gene structure and expression in human epithelial cells after exposure to nickel. Cancer Res 52:218–221

    PubMed  CAS  Google Scholar 

  • Magos L (1991) Epidemiological and experimental aspects of metal carcinogenesis: physicochemical propertics, kinetics, and the active species. Environ Health Perspect 95:157–189

    PubMed  CAS  Google Scholar 

  • Mandel R, Ryser HJP (1984) Mutagenicity of cadmium in Salmonella typhimurium and its synergism with two nitrosamines. Mutat Res 18:9–16

    Google Scholar 

  • McBride TJ, Preston BD, Loeb LA (1991) Mutagenic spectrum resulting from DNA damage by oxygen redicals. Biochemistry 30:207–213

    PubMed  CAS  Google Scholar 

  • Mee KL, Adelstein J (1981) Predominance of core histones in formation of DNA-protein crosslinks in gamma-irradiated chromatin. Proc Natl Acad Sci USA 78:2194–2198

    PubMed  CAS  Google Scholar 

  • Miller CA III, Costa M (1989) Immunological detection of DNA-protein complexes induced by Chromate. Carcinogenesis 10:667–672

    PubMed  CAS  Google Scholar 

  • Miller CA, Cohen MD, Costa M (1991) Complexing of actin and other nuclear proteins to DNA by cis-diamminodichloroplatinum (II) and chromium compounds. Carcinogenesis 12:269–276

    PubMed  CAS  Google Scholar 

  • Misra M, Olinski R, Dizdaroglu M, Kasprzak K (1993) Enhancement by L-histidine of nickel(II)-induced DNA-protein cross-linking and oxidative DNA base damage in the rat kidney. Chem Res Toxicol 6:33–37

    PubMed  CAS  Google Scholar 

  • Mitra RS, Gray RH, Chin B, Bernstein IA (1975) Molecular mechanisms of accommodation in Escherichia coli to toxic levels of Cd2+. J Bacteriol 121:1180–1188

    PubMed  CAS  Google Scholar 

  • Miura T, Patiern SR, Sakuramoto T, Landolph JR (1989) Morphological and neoplastic transformation of C3H/10T1/2Cl 8 mouse embryo cells by insoluble carcinogenic nickel compounds. Environ Mol Mutagen 14:65–78

    PubMed  CAS  Google Scholar 

  • Miyaki M, Murata I, Osabe M, Ono T (1977) Effect of metal cations on misincorporation by E. coli DNA polymerases. Biochem Biophys Res Commun 77:854–860

    PubMed  CAS  Google Scholar 

  • Miyaki M, Akamatsu N, Ono T, Koyama H (1979) Mutagenicity of metal cations in cultured cells from Chinese hamster. Mutat Res 68:259–263

    PubMed  CAS  Google Scholar 

  • Morimoto K, Iijima S, Koizumi A (1982) Selenite prevents the induction of sister-chromatid exchanges by methyl mercury and mercuric chloride in human whole-blood cultures. Mutat Res 10:183–192

    Google Scholar 

  • Morita H, Umeda M, Ogawa HI (1991) Mutagenicity of various chemicals including nickel and cobalt compounds in cultured mouse FM3A cells. Mutat Res 261:131–137

    PubMed  CAS  Google Scholar 

  • Moriya M, Ou C, Bodipudi V, Takeshita M, Grollman AA (1991) Site specific mutagenesis using a gapped duplex vector: a study of translesion synthesis past 8-oxodeoxyguanosine in E. coli. Mutat Res 254:281–288

    PubMed  CAS  Google Scholar 

  • Mukai FH, Goldstein BD (1976) Mutagenicity of malonaldehyde, a decomposition product of peroxidized polyunsaturated fatty acid. Science 191:868–869

    PubMed  CAS  Google Scholar 

  • Müller T, Schuckelt R, Jaenicke L (1991) Cadmium/zinc-metallothionein induces DNA strand breaks in vitro. Arch Toxicol 65:20–26

    PubMed  Google Scholar 

  • Nackerdien Z, Kasprzak KS, Rao G, Halliwell B, Dizdaroglu M (1991) Nickel(II)- and cobalt(II)-dependent damage by hydrogen peroxide to the DNA bases in isolated chromatin. Cancer Res 51:5837–5842

    PubMed  CAS  Google Scholar 

  • Nishioka H (1975) Mutagenic activities of metal compounds in bacteria. Mutat Res 31:185–189

    PubMed  CAS  Google Scholar 

  • Nocentini S (1987) Inhibition of DNA replication and repair by cadmium in mammalian cells. Protective interaction by zinc. Nucleic Acids Res 15:4211–4225

    PubMed  CAS  Google Scholar 

  • Oberly TJ, Piper CE, McDonald DS (1982) Mutagenicity of metal salts in the L5178Y mouse lymphoma assay. J Toxicol Environ Health 9:367–376

    PubMed  CAS  Google Scholar 

  • Ochi T, Ohsawa M (1983) Induction of 6-thioguanine-resistant mutants and single-strand scission of DNA by cadmium chloride in cultured Chinese hamster cells. Mutat Res 111:69–78

    PubMed  CAS  Google Scholar 

  • Ochi T, Ohsawa M (1985) Participation of active oxygen species in the induction of chromosomal aberrations by cadmium chloride in cultured Chinese hamster cells. Mutat Res 143:137–142

    PubMed  CAS  Google Scholar 

  • Ochi T, Takahashi K, Ohsawa M (1987) Indirect evidence for the induction of a prooxidant state by cadmium chloride in cultured mammalian cells and a possible mechanism for the induction. Mutat Res 180:257–266

    PubMed  CAS  Google Scholar 

  • Ohawa HI, Tsuruta S, Niyitani Y, Mino H, Sakata K, Kato Y (1987) Mutagenicity of metal salts in combination with 9-amino-acridine in Salmonella typhimurium. Jinrui Idengaku Zasshi 62:159–162

    Google Scholar 

  • Okui T, Fujiwara Y (1986) Inhibition of human excision DNA repair by inorganic arsenic and the comutagenic effect in V79 Chinese hamster cells. Mutat Res 172:69–76

    PubMed  CAS  Google Scholar 

  • Onfelt A (1983) Spindle disturbances in mammalian cells. I. Changes in the quantity of free sulfhydryl groups in relation to survival and c-mitosis in V79 Chinese hamster cells after treatment with colcemid, diamide, carbaryl and methyl mercury. Chem Biol Interact 46:201–217

    PubMed  CAS  Google Scholar 

  • Onfelt A, Jenssen D (1982) Enhanced mutagenic response of MNU by posttreatment with methylmercury, caffeine or thymidine in V79 Chinese hamster cells. Mutat Res 106:297–303

    PubMed  CAS  Google Scholar 

  • Pagano DA, Zeiger E (1992) Conditions for detecting divalent metals as direct-acting mutagens in Salmonella. Environ Mol Mutagen 19:139–146

    PubMed  CAS  Google Scholar 

  • Patierno SR, Costa M (1985) DNA-protein cross-links induced by nickel compounds in intact cultured mammalian cells. Chem Biol Interact 55:75–91

    PubMed  CAS  Google Scholar 

  • Patierno SR, Sugiyama M, Basilion JP, Costa M (1985) Preferential DNA-protein crosslinking by NiCl2 in magnesium insoluble regions of fractionated Chinese hamster ovary cell chromatin. Cancer Res 45:5787

    PubMed  CAS  Google Scholar 

  • Paton GR, Allison AC (1972) Chromosome damage in human cell cultures induced by metal salts. Mutat Res 16:332–336

    PubMed  CAS  Google Scholar 

  • Perrino FW, Loeb LA (1990) Animal cell DNA polymerases in DNA repair. Mutat Res 236:289–300

    PubMed  CAS  Google Scholar 

  • Petrilli FL, DeFlora S (1977) Toxicity and mutagenicity of hexavalent chromium on Salmonella typhimurium. Appl Environ Microbiol 33:805–809

    PubMed  CAS  Google Scholar 

  • Popenoe EA, Schmaeler MA (1979) Interaction of human DNA polymerase β with ions of copper, lead and cadmium. Arch Biochem Biophys 106:190–201

    Google Scholar 

  • Rainaldi G, Colella CM, Piras A, Marini T (1982) Thioguanine resistance, ouabain resistance and sister chromatid exchanges in V79/AP4 Chinese hamster cells treated with potassium dichromate. Chem Biol Interact 42:45–51

    PubMed  CAS  Google Scholar 

  • Ramel C (1972) Genetic effects. In: Friberg L, Vosta D (eds) Mercury in the environment: toxicological effects of epidemiological and toxicological appraisal. CRC, Cleveland, pp 169–181

    Google Scholar 

  • Ramel C, Magnusson J (1979) Chemical induction of nondisjunction in Drosophila. Environ Health Perspect 31:59–66

    PubMed  CAS  Google Scholar 

  • Robison SH, Cantoni O, Costa M (1982) Strand breakage and decreased molecular weight of DNA induced by specific metal compounds. Carcinogenesis 3:657–662

    PubMed  CAS  Google Scholar 

  • Robison SH, Cantoni O, Costa M (1984) Analysis of metal-induced DNA lesions and DNA repair replication in mammalian cells. Mutat Res 131:173–181

    PubMed  CAS  Google Scholar 

  • Rodney PF, Robert JJ, Lay PA, Dixon NE, Raker RSU, Bonin AM (1989) Chromium (V)-induced cleavage of DNA: are chromium (V) complexes the active carcinogens in chromium (VI)-induced cancer? Chem Res Toxicol 2:227–229

    Google Scholar 

  • Rossman TG (1981) Enhancement of UV-mutagenesis by low concentrations of arsenite in E. coli. Mutat Res 91:207–211

    PubMed  CAS  Google Scholar 

  • Rossman TG (1989) On the mechanism of the comutagenic effect of Cu(II) with ultraviolet light. Biol Trace Elem Res 21:383–388

    PubMed  CAS  Google Scholar 

  • Rossman TG, Molina M (1986) The genetic toxicology of metal compounds. II. Enhancement of ultraviolet light-induced mutagenesis in E. coli WP2. Environ Mutagen 8:263–271

    PubMed  CAS  Google Scholar 

  • Rossman TG, Wolosin D (1992) Differential susceptibility to carcinogen-induced amplification of SV40 and dhfr sequences in SV40-transformed human keratinocytes. Mol Carcinogen 6:203–213

    CAS  Google Scholar 

  • Rossman TG, Stone D, Molina M, Troll W (1980) Absence of arsenite mutagenicity in E. coli and Chinese hamster cells. Environ Mutagen 2:371–379

    PubMed  CAS  Google Scholar 

  • Rossman TG, Molina M, Meyer LW (1984) The genetic toxicology of metal compounds. I. Induction of λ prophage in E. coli WP2s (λ). Environ Mutagen 6:59–69

    CAS  Google Scholar 

  • Rossman TG, Zelikoff JT, Agarwal S, Kneip TJ (1987) Genetic toxicology of metal compounds: an examination of appropriate cellular models. Toxicol Environ Chem 14:251–262

    CAS  Google Scholar 

  • Rossman TG, Molina M, Meyer L, Boon P, Klein CB, Wang Z, Li F, Lin WC, Kinney PL (1991) Performance of 133 compounds in the lambda induction endpoint of the Microscreen assay and a comparison with Salmonella mutagenicity and rodent carcinogenicity bioassays. Mutat Res 260:349–367

    PubMed  CAS  Google Scholar 

  • Roy NK, Rossman TG (1992) Mutagenesis and comutagenesis by lead compounds. Mutat Res 298:97–103

    PubMed  CAS  Google Scholar 

  • Salnikow K, Zhitkovich A, Costa M (1992) Analysis of the binding sites of chromium to DNA and protein in vitro and in intact cells. Carcinogenesis 13:2341–2346

    PubMed  CAS  Google Scholar 

  • Schaaper RM, Koplitz RM, Tkeshelashvili LK, Loeb LA (1987) Metal-induced lethality and mutagenesis: possible role of apurinic intermediates. Mutat Res 177:179–188

    PubMed  CAS  Google Scholar 

  • Schultz PM, Warren G, Kosso C, Rogers S (1982) Mutagenicity of a series of hexacoordinate cobalt(III) compounds. Mutat Res 102:393–400

    PubMed  CAS  Google Scholar 

  • Scicchitano DA, Pegg AE (1987) Inhibition of O6-alkylguanine-DNA-alkyltransferase by metals. Mutat Res 192:207–210

    PubMed  CAS  Google Scholar 

  • Sen P, Costa M (1985) Induction of chromosomal damage in Chinese hamster ovary cells by soluble and particulate nickel compounds: preferential fragmentation of the heterochromatic long arm of the X-chromosome by carcinogenic crystalline NiS particles. Cancer Res 45:2320–2325

    PubMed  CAS  Google Scholar 

  • Shamberger RJ (1985) The genotoxicity of selenium. Mutat Res 154:29–48

    PubMed  CAS  Google Scholar 

  • Shirname-More L, Rossman TG, Troll W, Teebor GW, Frenkel K (1987) Genetic effects of 5-hydroxymethyl-2′-deoxyuridine, a product of ionizing radiation. Mutat Res 178:177–186

    PubMed  CAS  Google Scholar 

  • Simic MG (1989) Mechanisms of inhibition of free-radical processes in mutagenesis and carcinogenesis. Mutat Res 202:377–386

    Google Scholar 

  • Simmon VF (1979) In vitro mutagenicity assays of chemical carcinogens and related compounds with Salmonella typhimurium. JNCI 63:893–899

    Google Scholar 

  • Singer B, Grunberger D (1983) Molecular biology of mutagens and carcinogens. Plenum, New York, pp 55–65

    Google Scholar 

  • Sirover MA, Loeb LA (1976) Metal-induced infidelity during DNA synthesis. Proc Natl Acad Sci USA 73:2331–2335

    PubMed  CAS  Google Scholar 

  • Skilleter DN (1984) Biochemical properties of beryllium potentially relevant to its carcinogenicity. Toxicol Environ Chem 7:213–228

    CAS  Google Scholar 

  • Skreb Y, Habazin-Novak V (1977) Lead induced modification of the response to X-rays in human cells in culture. Stud Biophys 63:97–103

    CAS  Google Scholar 

  • Skreb Y, Habazin-Novak V, Hors N (1981) The rate of DNA synthesis in Hela cells during combined long-term and acute exposures to lead. Toxicology 19:1–10

    PubMed  CAS  Google Scholar 

  • Snow ET (1991) A possible role for chromium (III) in genotoxicity. Environ Health Perspect 92:75–81

    PubMed  CAS  Google Scholar 

  • Snow ET (1992) Metal carcinogenesis: mechanistic considerations. Pharmacol Ther 53:31–65

    PubMed  CAS  Google Scholar 

  • Snow ET (1994) Effects on chromium on DNA replication in vitro. Environ Health Perspect (in press)

    Google Scholar 

  • Snow ET, Xu L-S (1991) Chromium (III) bound to DNA templates enhances DNA polymerase processivity during replication in vitro. Biochemistry 30:11238–11245

    PubMed  CAS  Google Scholar 

  • Snow ET, Foote RS, Mitra S (1984) Base-pairing properties of O6-methylguanine in template DNA during in vitro DNA replication. J Biol Chem 259:8095–8100

    PubMed  CAS  Google Scholar 

  • Snow ET, Xu L-S, Kinney PL (1993) Effects of nickel ions on polymerase activity and fidelity during DNA replication in vitro. Chem Biol Interact 88:155–173

    PubMed  CAS  Google Scholar 

  • Snyder RD (1988) Role of active oxygen species in metal-induced DNA strand breakage in human diploid fibroblasts. Mutat Res 193:237–246

    PubMed  CAS  Google Scholar 

  • Snyder RD, Matheson DW (1985) Nick-translation: a new assay for monitoring DNA damage and repair in cultured human fibroblasts. Environ Mutagen 7:267–279

    PubMed  CAS  Google Scholar 

  • Snyder RD, Davis GF, Lachmann P (1989) Inhibition by metals of x-ray and ultraviolet-induced DNA repair in human cells. Biol Trace Elem Res 21:389–398

    PubMed  CAS  Google Scholar 

  • Söderhall S, Lindahl T (1987) DNA ligase of eukaryotes. FEBS Lett 67:1–8

    Google Scholar 

  • Stacey NH, Cantilen LR Jr, Klaassen CD (1980) Cadmium toxicity and lipid peroxidation in isolated rat hepatocytes. Toxicol Appl Pharmacol 53:4700–480

    Google Scholar 

  • Standeven AM, Wetterhahn KE (1991) Ascorbate is the principal reductant of chromium (VI) in rat liver and kidney ultrafiltrates. Carcinogenesis 12:1733–1737

    PubMed  CAS  Google Scholar 

  • Standeven AM, Wetterhahn KE (1992) Ascorbate is the principal reductant of chromium (VI) in rat lung ultrafiltrates and cytosols, and mediates chromium-DNA binding in vitro. Carcinogenesis 13:1319–1324

    PubMed  CAS  Google Scholar 

  • Stark A-A, Zeiger E, Pagano DA (1988) Glutathione mutagenesis in Salmonella typhimurium is a γ-glutamylpeptidase-enhanced process involving active oxygen species. Carcinogenesis 9:771–777

    PubMed  CAS  Google Scholar 

  • Stich HF, Wei L, Whiting RF (1979) Enhancement of the chromosome-damaging action of some reducing agents. Cancer Res 39:4145–4151

    PubMed  CAS  Google Scholar 

  • Sugden K, Burris RB, Rogers SJ (1990) An oxygen dependence in chromium mutagenesis. Mutat Res 244:239–244

    PubMed  CAS  Google Scholar 

  • Sugiyama M, Wang XW, Costa M (1986) Comparison of DNA lesions and cytotoxicity induced by calcium Chromate in human, mouse, and hamster cell lines. Cancer Res 46:4547–4551

    PubMed  CAS  Google Scholar 

  • Sugiyama M, Lin X, Costa M (1991) Protective effect of vitamin E against chromosomal aberrations and mutations induced by sodium Chromate in Chinese hamster V79 cells. Mutat Res 260:19–23

    PubMed  CAS  Google Scholar 

  • Sunderman FW Jr (1984) Carcinogenicity of nickel compounds in animals. IARC Sci Publ 53:127–142

    PubMed  CAS  Google Scholar 

  • Swierenga SHH, McLean JR (1984) Further insights into mechanisms of nickel-induced DNA damage: studies with cultured rat liver cells. In: Brown SS, Sunderman FW Jr (eds) Progress in Nickel Toxicology. Blackwell Scientific, London, pp 101–104

    Google Scholar 

  • Takahashi K, Imaeda T, Kawazoe Y (1988) Effect of metal ions on the adaptive response induced by N-methyl-N-nitrosourea in Escherichia coli. Biochem Biophys Res Commun 157:1124–1130

    PubMed  CAS  Google Scholar 

  • Takahashi K, Imaeda T, Kawazoe Y (1991) Inhibitory effect of cadmium and mercury ions on the induction of the adaptive response in Escherichia coli. Mutat Res 254:45–53

    PubMed  CAS  Google Scholar 

  • Tkeshelashvili LK, McBride T, Spence K, Loeb LA (1991) Mutation spectrum of copper-induced DNA damage. J Biol Chem 266:6401–6406

    PubMed  CAS  Google Scholar 

  • Truhaut R, Festy B, LeTalaer J-Y (1968) Interaction of beryllium with DNA and its incidence with some enzymatic system (Fr.). C R Acad Sci [D] (Paris) 266:1192–1195

    CAS  Google Scholar 

  • Tsapakos MJ, Wetterhahn KE (1983) The interaction of chromium with nucleic acids. Chem Biol Interact 46:265–277

    PubMed  CAS  Google Scholar 

  • Vahter M, Marafante E (1989) Intracellular distribution and chemical forms of arsenic in rabbits exposed to arsenate. Biol Trace Elem Res 21:233–239

    PubMed  CAS  Google Scholar 

  • Verschaeve L, Kirsch-Volders M, Susanne C (1984) Mercury-induced segregational errors of chromosomes in human lymphocytes and Indian muntjac cells. Toxicol Lett 21:247–253

    PubMed  CAS  Google Scholar 

  • Wade GG, Mandel R, Ryser HJP (1987) Marked synergism of dimethylnitrosamine carcinogenesis in rats exposed to cadmium. Cancer Res 47:6606–6613

    PubMed  CAS  Google Scholar 

  • Wang Z, Rossman TG (1993) Stable and inducible arsenite resistance in Chinese hamster cells. Toxicol Appl Pharmacol 118:80–86

    PubMed  CAS  Google Scholar 

  • Wang Z, Hou G, Rossman TG (1994) Induction of arsenite tolerance and thermotolerance occur by different mechanisms. Environ Health Perspect (in press)

    Google Scholar 

  • Warren G, Skaar PD, Rogers SJ (1976) Genetic activity of dithiocarbamate and thiocarbamoyl disulfide fungicides in Saccharomyces cerevesiae, Salmonella typhimurium and Escherichia coli. Mutat Res 38:391–392

    Google Scholar 

  • Warren G, Schultz P, Bancroft D, Bennett K, Abbott EH, Rogers S (1981) Mutagenicity of a series of hexacoordinate chromium(III) compounds. Mutat Res 90:111–122

    PubMed  CAS  Google Scholar 

  • Warren W, Crathorn AR, Shooter KV (1979) The stability of methylated purines and of methylphosphotriesters in the DNA of V79 cells after treatment with N-methyl-N-nitrosourea. Biochim Biophys Acta 563:82–88

    PubMed  CAS  Google Scholar 

  • Watanabe T, Shimada T, Endo A (1982) Effects of mercury compounds on ovulation and meiotic and mitotic chromosomes in female golden hamsters. Teratology 25:381–384

    PubMed  CAS  Google Scholar 

  • Wei H, Frenkel K (1991) In vivo formation of oxidized DNA bases in tumor promoter-treated mouse skin. Cancer Res 51:4443–4449

    PubMed  CAS  Google Scholar 

  • Whiting RF, Wei L, Stich HF (1980) Unscheduled DNA synthesis and chromosomal aberrations induced by inorganic and organic selenium compounds in the presence of glutathione. Mutat Res 78:159–169

    PubMed  CAS  Google Scholar 

  • Wiencke JK, Yager JW (1992) Specificity of arsenite in potentiating cytogenetic damage induced by the DNA crosslinking agent diepoxybutane. Environ Mol Mutagen 19:195–200

    PubMed  CAS  Google Scholar 

  • Willams GM, Laspia MF, Dunkel VC (1982) Reliability of the hepatocyte primary culture/DNA repair test in testing of coded carcinogens and noncarcinogens. Mutat Res 97:359–370

    Google Scholar 

  • Wood ML, Dizdaraglu M, Gajewski E, Essigman JM (1990) Mechanistic studies of ionizing radiation and oxidative mutagenesis: genetic effects of a single 8-hydroxyguanine (7-hydro-8 oxoguanine) residue inserted at a unique site in a viral genome. Biochemistry 29:7024–7033

    PubMed  CAS  Google Scholar 

  • Yamada H, Miyahara T, Sasaki YF (1993) Inorganic cadmium increases the frequency of chemically induced chromosome aberrations in cultured mammalian cells. Mutat Res 302:137–145

    PubMed  CAS  Google Scholar 

  • Yamamoto K, Inoue S, Yamazaki A, Yoshinaga T, Kawanishi S (1989) Site-specific DNA damage induced by cobalt(II) ion and hydrogen peroxide: role of singlet oxygen. Chem Res Toxicol 2:234–239

    PubMed  CAS  Google Scholar 

  • Yamanaka K, Hoshino M, Pkamoto M, Sawamura R, Hasegawa A, Okada S (1990) Induction of DNA damage by dimethylarsine, a metabolite of inorganic arsenics, is for the major part likely due to its peroxyl radical. Biochem Biophys Res Commun 168:58–64

    PubMed  CAS  Google Scholar 

  • Yang J-L, Chen M-F, Wu C-W, Lee T-C (1992a) Posttreatment with sodium arsenite alters the mutation spectrum induced by ultraviolet light irradiation in Chinese hamster ovary cells. Environ Mol Mutagen 20:156–164

    PubMed  CAS  Google Scholar 

  • Yang J-L, Hsieh Y-C, Wu C-W, Lee T-C (1992b) Mutational specificity of chromium (VI) compounds in the hprt locus of Chinese hamster ovary-K1 cells. Carcinogenesis 13:2053–2057

    PubMed  CAS  Google Scholar 

  • Zakour RA, Glickman BW (1984) Metal-induced mutagenesis in the lac I gene of Escherichia coli. Mutat Res 126:9–18

    PubMed  CAS  Google Scholar 

  • Zakour RA, Kunkle TA, Loeb LA (1981) Metal induced infidelity of DNA synthesis. Environ Health Perspect 40:197–205

    PubMed  CAS  Google Scholar 

  • Zelikoff JT, Li JH, Hartwig A, Wang XW, Costa M, Rossman TG (1988) Genetic toxicology of lead compounds. Carcinogenesis 9:1727–1732

    PubMed  CAS  Google Scholar 

  • Zhong Z, Troll W, Koenig KL, Frenkel K (1990) Carcinogenic sulfide salts of nickel and cadmium induce H2O2 formation by human polymorphonuclear leukocytes. Cancer Res 50:7564–7570

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rossman, T.G. (1995). Metal Mutagenesis. In: Goyer, R.A., Cherian, M.G. (eds) Toxicology of Metals. Handbook of Experimental Pharmacology, vol 115. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79162-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79162-8_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79164-2

  • Online ISBN: 978-3-642-79162-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics