Skip to main content

Therapeutic Use of Chelating Agents in Iron Overload

  • Chapter
Toxicology of Metals

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 115))

Abstract

Elemental iron, like molecular oxygen, is a highly toxic substance that is nevertheless essential for life. Therefore, like oxygen, complex biochemical systems have evolved for its safe delivery, transport, and utilization. Iron absorption in the human gut is a highly regulated process that depends in part on total body iron stores (FLanagan 1990; MCLAren et al. 1981). Loss of regulation, or stimulated transport in anemic states, contributes to iron overload and in some cases a need for chelation. Very few details of the processes involved in absorption are known. Safe transport of newly absorbed iron through the circulation is achieved by binding to the transport protein, transferrin. Transferrin has two iron-binding sites with association constants (log K) of 22.1 and 22.7 (MArtin et al. 1987), so iron is bound tightly in a non-redox-active form and is effectively nonexchangeable with other ligands normally present in plasma. Human transferrin is typically about one-third saturated with iron (MCLAren et al. 1981) so there is a large reserve capacity to accommodate additional iron. Controlled delivery of iron to tissues such as the liver is generally achieved by receptor-mediated endocytosis of a transferrin — transferrin-receptor complex, which dissociates in an acidified endosomal compartment (AIsen 1992; THeil and AIsen 1987), ultimately releasing iron for incorporation into its storage form, ferritin. The completed ferritin molecule comprises 24 protein subunits that surround an iron core with a basic ferric oxohydroxide structure as well as phosphate ligands. Up to 4500 atoms of iron can be accommodated in this core, which is coated by the peptides (THeil 1987). Utilization of ferritin iron, for example for the synthesis of cytochromes and other hemoproteins, may require reductive enzymatic release of iron from the relatively inert and sequestered core (THeil 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamson IYR, Sienko A, Tenenbein M (1993) Pulmonary toxicity of deferoxamine in iron-poisoned mice. Toxicol Appl Pharmacol 120:13–19

    PubMed  CAS  Google Scholar 

  • Aisen P (1992) Entry of iron into cells:a new role for the transferrin receptor in modulating iron release from transferrin. Ann Neurol 32:S62–S68

    PubMed  CAS  Google Scholar 

  • Aksoy M, Birdwood GFB (eds) (1985) Hypertransfusion and iron chelation in thalassemia. Huber, Berne

    Google Scholar 

  • Al-Refaie FN, Wickens DG, Wonke B, Kontoghiorghes GJ, Hoffbrand AV (1992) Serum non-transferrin-bound iron in beta-thalassaemia major patients treated with desferrioxamine and L1. Br J Haematol 82:431–436

    PubMed  CAS  Google Scholar 

  • Alfrey AC, Froment DH, Hammond WS (1989) Role of iron in the tubulo-interstitial injury in nephrotoxic serum nephritis. Kidney Int 36:753–759

    PubMed  CAS  Google Scholar 

  • Aust SD, Chignell CF, Bray TM, Kalyanaraman B, Mason RP (1993) Free radical in toxicology. Toxicol Appl Pharmacol 120:168–178

    PubMed  CAS  Google Scholar 

  • Babbs CF (1985) Role of iron ions in the genesis of reperfusion injury following successful cardiopulmonary resuscitation:preliminary data and a biochemical hypothesis. Ann Emerg Med 14:777

    PubMed  CAS  Google Scholar 

  • Baes CF Jr, Mesmer RE (1986) The hydrolysis of cations. Krieger, Malabar

    Google Scholar 

  • Barlow DJ, Hider RC, Singh S, Wibley KS (1988) Computer-aided modelling of the structures and metal-ion affinities of chelating agents. Biochem Soc Trans 16:835–836

    CAS  Google Scholar 

  • Behringer RR, Ryan TM, Palmiter RD, Brinster RL, Townes TM (1990) Human gamma- to beta-globin gene switching in transgenic mice. Genes Dev 4:380–389

    PubMed  CAS  Google Scholar 

  • Ben-Shachar D, Eshel G, Riederer P, Youdim MBH (1992) Role of iron and iron chelation in dopaminergic-induced neurodegeneration:implication for Parkinson’s disease. Ann Neurol 32 [Suppl]:S105–S110

    PubMed  CAS  Google Scholar 

  • Berdoukas V, Bentley P, Frost H, Schnebli HP (1993) Toxicity of oral iron chelator L1. Lancet 341:1088

    PubMed  CAS  Google Scholar 

  • Bergeron RJ, Liu Z-R, McManis JS, Wiegand J (1992) Structural alterations in desferrioxamine compatible with iron clearance in animals. J Med Chem 35:4739–4744

    PubMed  CAS  Google Scholar 

  • Bergeron RJ, Streiff RR, Creary EA, Daniels RD Jr, King W, Luchetta G, Wiegand J, Moerker T, Peter HH (1993) A comparative study of the iron-clearing properties of desferrithiocin analogues with desferrioxamine B in a Cebus monkey model. Blood 81:2166–2173

    PubMed  CAS  Google Scholar 

  • Bickel H, Gäumann E, Keller-Schierlein W, Prelog V, Vischer E, Wettstein A, Zähner H (1960) Iron-containing growth factors, the sideramines, and their antagonists, the iron-containing antibiotics, sideromycins. Experientia 16:129–133

    PubMed  CAS  Google Scholar 

  • Biemond P, van Eijk HG, Swaak AJG, Koster JF (1984) Iron mobilization from ferritin by superoxide derived from stimulated polymorphonuclear leukocytes. J Clin Invest 73:1576–1579

    PubMed  CAS  Google Scholar 

  • Blake DR, Hall ND, Bacon PA, Dieppe PA, Halliwell B, Gutteridge JMC (1983) Effect of a specific iron chelating agent on animal models of inflammation. Ann Rheum Dis 42:89–93

    PubMed  CAS  Google Scholar 

  • Brieland JK, Clarke SJ, Karmiol S, Phan SH, Fantone JC (1992) Transferrin:a potential source of iron for oxygen free radical-mediated endothelial cell injury. Arch Biochem Biophys 294:265–270

    PubMed  CAS  Google Scholar 

  • Brittenham GM (1990) Pyridoxal isonicotinoyl hydrazone:an effective iron-chelator after oral administration. Semin Hematol 27:112–116

    PubMed  CAS  Google Scholar 

  • Brittenham GM (1992) Development of iron-chelating agents for clinical use. Blood 80:569–574

    PubMed  CAS  Google Scholar 

  • Brittenham GM, Cohen AR, McLaren CE, Martin MB, Griffith PM, Nienhuis AW, Young NS, Allen CJ, Farrell DE, Harris JW (1993) Hepatic iron stores and plasma ferritin concentration in patients with sickle cell anemia and thalassemia major. Am J Hematol 42:81–85

    PubMed  CAS  Google Scholar 

  • Bronspigel-Weintrob N, Olivieri NF, Tyler B, Andrews DF, Freedman MH, Holland JF (1990) Effect of age at the start of iron chelation therapy on gonadal function in ß-thalassemia major. N Engl J Med 323:713–719

    Google Scholar 

  • Burkitt MJ, Kadiiska MB, Hanna PM, Jordan SJ, Mason RP (1993) Electron spin resonance spin-trapping investigation into the effects of paraquat and desferrioxamine on hydroxyl radical generation during acute iron poisoning. Mol Pharmacol 43:257–263

    PubMed  CAS  Google Scholar 

  • Caughman SW, Hentze MW, Rouault TA, Harford JB, Klausner RD (1988) The iron-responsive element is the single element responsible for iron-dependent translational regulation of ferritin biosynthesis. Evidence for function as the binding site for a translational repressor. J Biol Chem 263:19048–19052

    PubMed  CAS  Google Scholar 

  • Cleton F, Turnbull A, Finch CA (1963) Synthetic chelating agents in iron metabolism. J Clin Invest 42:327–337

    PubMed  CAS  Google Scholar 

  • Cohen A (1990) Current status of iron chelation therapy with deferoxamine. Semin Hematol 27:86–90

    PubMed  CAS  Google Scholar 

  • Cohen A, Martin M, Schwartz E (1984) Depletion of excessive liver iron stores with desferrioxamine. Br J Haematol 58:369–373

    PubMed  CAS  Google Scholar 

  • Conrad ME (1993) Excess iron and catastrophic illness. Am J Hematol 43:234–236

    PubMed  CAS  Google Scholar 

  • Conrad ME, Umbreit JN (1993) Iron absorption — the mucin-mobilferrin-integrin pathway. A competitive pathway for metal absorption. Am J Hematol 42:67–73

    PubMed  CAS  Google Scholar 

  • Conrad ME, Umbreit JN, Peterson RDA, Moore EG, Harper KP (1993) Function of integrin in duodenal mucosal uptake of iron. Blood 81:517–521

    PubMed  CAS  Google Scholar 

  • Cooper SR, McArdle JV, Raymond KN (1978) Siderophore electrochemistry:relation to intracellular iron release mechanism. Proc Natl Acad Sci USA 75:3551–3554

    PubMed  CAS  Google Scholar 

  • De Sanctis V, Zurlo MG, Senesi E, Boffa C, Callao L, Di Gregorio F (1988) Insulin-dependent diabetes in thalassemia. Arch Dis Child 63:58–62

    PubMed  Google Scholar 

  • De Virgiliis S, Congia M, Frau F, Argiolu F, Diana G, Cucca F, Varsi A, Sanna G, Podda G, Fodde M, Pirastu GF, Cao A (1988) Deferoxamine-induced growth retardation in patients with thalassemia major. J Pediatr 113:661–669

    PubMed  Google Scholar 

  • Deighton N, Hider RC (1989) Intracellular low molecular weight iron. Biochem Soc Trams 17:490

    CAS  Google Scholar 

  • Dix DJ, Lin P-N, Kimata Y, Theil EC (1992) The iron regulatory region of ferritin mRNA is also a positive control element for iron-independent translation. Biochemistry 31:2818–2822

    PubMed  CAS  Google Scholar 

  • Ellis JT, Schulman I, Smith CH (1954) Generalized siderosis with fibrosis of the liver and pancreas in Cooley’s (Mediterranean) anemia with observations on pathogenesis of siderosis and fibrosis. Am J Pathol 30:287–309

    PubMed  CAS  Google Scholar 

  • Enver T, Raich N, Ebens AJ, Papayannopoulou T, Constantini F, Stamatoyan-nopoulos G (1990) Developmental regulation of human fetal-to-adult globin gene switching in transgenic mice. Nature 344:309–313

    PubMed  CAS  Google Scholar 

  • Esterbauer H (1993) Cytotoxicity and genotoxicity of lipid-peroxidation products. Am J Clin Nutr 57 [Suppl]:779S–786S

    PubMed  CAS  Google Scholar 

  • Estrov Z, Tawa A, Wang XH, Dube ID, Sulh H, Cohen A, Gelfand EW, Freedman MH (1987) In vitro and in vivo effects of deferoxamine in neonatal acute leukemia. Blood 69:757–761

    PubMed  CAS  Google Scholar 

  • Fairbanks VF, Fahey JL, Beutler E (1971) Clinical disorders of iron metabolism, 2nd edn. Grune and Stratton, New York

    Google Scholar 

  • Flanagan PR (1990) Intestinal iron absorption and metabolism. In:Ponka P, Schulman HM, Woodworth RC (eds) Iron transport and storage. CRC, Boca Raton, pp 247–261

    Google Scholar 

  • Fredenburg AM, Wedlund PJ, Skinner TL, Damani LA, Hider RC, Yokel RA (1993) Pharmacokinetics of representative 3-hydroxypyridin-4-ones in rabbits:CP20 and CP94. Drug Metab Dispos 21:255–258

    PubMed  CAS  Google Scholar 

  • Freedman MH, Grisaru D, Olivieri N, MacLusky I, Thorner P (1990) Pulmonary syndrome in patients with thalassemia major receiving deferoxamine infusions. Am J Dis Child 144:565–569

    PubMed  CAS  Google Scholar 

  • Funk F, Lenders J-P, Crichton RR, Schneider W (1985) Reductive mobilisation of ferritin iron. Eur J Biochem 152:167–172

    PubMed  CAS  Google Scholar 

  • Gallant T, Freedman MH, Vellend H, Francombe WH (1986) Yersinia sepsis in patients with iron overload treated with deferoxamine. N Engl J Med 314:1643

    PubMed  CAS  Google Scholar 

  • Gordeuk V, Mukiibi J, Hasstedt SJ, Samowitz W, Edwards CQ, West G, Ndambire S, Emmanual J, Nkanza N, Chapanduka Z, Randall M, Boone P, Romano P, Martell RW, Yamashita T, Effler P, Brittenham G (1992a) Iron overload in Africa — interaction between a gene and dietary iron content. N Engl J Med 326:95–100

    PubMed  CAS  Google Scholar 

  • Gordeuk V, Thuma P, Brittenham G, McLaren C, Parry D, Backenstose A, Biemba G, Msiska R, Holmes L, McKinley E, Vargas L, Gilkeson R, Poltera AA (1992b) Effect of iron chelation on recovery from deep coma in children with cerebral malaria. N Engl J Med 327:1473–1477

    PubMed  CAS  Google Scholar 

  • Grady RW, Hershko C (1990) An evaluation of the potential of HBED as an orally effective iron-chelating drug. Semin Hematol 27:105–111

    PubMed  CAS  Google Scholar 

  • Grady RW, Jacobs A (1981) The screening of potential iron chelating drugs. In:Martell AE, Anderson WF, Badman DG (eds) Development of iron chelators for clinical use. Elsevier/North-Holland, Amsterdam, pp 133–164

    Google Scholar 

  • Grady RW, Salbe AD, Hilgartner MW, Giardina PJ (1994) Preliminary results from a phase I clinnical trial of HBED. In:Bergeron RJ, Brittenham GM (eds) The development of iron chelators for clinical use. CRC Press, Boca Raton, pp 395–406

    Google Scholar 

  • Graf E, Mahoney JR, Bryant RG, Eaton JW (1984) Iron-catalyzed hydroxyl radical formation:stringent requirement for free iron coordination site. J Biol Chem 259:3620–3624

    PubMed  CAS  Google Scholar 

  • Grootveld M, Bell JD, Halliwell B, Aruoma OI, Bomford A, Sadler PJ (1989) Non-transferrin-bound iron in plasma or serum from patients with idiopathic hemochromatosis. Characterization by high performance liquid chromatography and nuclear magnetic resonance spectroscopy. J Biol Chem 264:4417–4422

    PubMed  CAS  Google Scholar 

  • Gyparaki M, Porter JB, Huehns ER, Hider RC (1986) Evaluation in vivo of hydroxypyrid-4-one iron chelators intended for the treatment of iron overload by the oral route. Biochem Soc Trans 14:1181–1181

    CAS  Google Scholar 

  • Hallaway PE, Eaton JW, Panter SS, Hedlund BE (1989) Modulation of deferoxamine toxicity and clearance by covalent attachment to biocompatible polymers. Proc Natl Acad Sci USA 86:10108–10112

    PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1990) Role of free radicals and catalytic metal ions in human disease:an overview. Methods Enzymol 186:1–88

    PubMed  CAS  Google Scholar 

  • Hanscombe O, Whyatt D, Fraser P, Yannoutsos N, Greaves D, Dillon N, Grosveld S (1991) Importance of globin gene order for correct developmental expression. Genes Dev 5:1387–1394

    PubMed  CAS  Google Scholar 

  • Hedlund BE, Hallaway PE (1993) High-dose systemic iron chelation attenuates reperfusion injury. Biochem Soc Trans 21:340–343

    PubMed  CAS  Google Scholar 

  • Hershko C (1993) Development of oral iron chelator L1. Lancet 341:1088–1089

    PubMed  CAS  Google Scholar 

  • Hershko C, Weatherall DJ (1988) Iron-chelating therapy. CRC Crit Rev Clin Lab Sci 26:303–346

    CAS  Google Scholar 

  • Hershko C, Grady RW, Cerami A (1978) Mechanism of iron chelation in the hypertransfused rat:definition of two alternative pathways of iron mobilization. J Clin Lab Sci 92:144–151

    CAS  Google Scholar 

  • Hershko C, Link G, Pinson A (1987) Modification of iron uptake and lipid peroxidation by hypoxia, ascorbic acid, and α-tocopherol in iron-loaded rat myocardial cell cultures. J Lab Clin Med 110:355–361

    PubMed  CAS  Google Scholar 

  • Hider RC, Hall AD (1991) Clinically useful chelators of tripositive elements. Prog Med Chem 28:43–173

    Google Scholar 

  • Hider RC, Kontoghiorges G, Silver J (1982) Pharmaceutical compositions. UK Patent GB 2118176A

    Google Scholar 

  • Hider RC, Porter JB, Singh S (1994) The design of therapeutically useful iron chelators. In:Bergeron RJ, Brittenham GM (eds) The development of iron chelators for clinical use. CRC Press, Boca Raton, pp 353–371

    Google Scholar 

  • Hoffbrand AV, Ganeshaguru K, Hooton JWL, Tattersall MHN (1976) Effect of iron deficiency and desferrioxamine on DNA synthesis in human cells. Br J Haematol 33:517–526

    PubMed  CAS  Google Scholar 

  • Huehns ER, Porter JB, Hider RC (1988) Selection of hydroxypyridin-4-ones for the treatment of iron overload using in vitro and in vivo models. Hemoglobin 12:593–600

    PubMed  CAS  Google Scholar 

  • Hughes MN (1972) The inorganic chemistry of biological processes. Wiley, London

    Google Scholar 

  • Hussain MAM, Green N, Flynn DM, Hoffbrand AV (1977) Effect of dose, time, and ascorbate on iron excretion after subcutaneous desferrioxamine. Lancet 1:977–979

    PubMed  CAS  Google Scholar 

  • Iancu TC, Shiloh H, Link G, Bauminger ER, Pinson A, Hershko C (1987) Ultra-structural pathology of iron-loaded rat myocardial cells in culture. Br J Exp Pathol 68:53–65

    PubMed  CAS  Google Scholar 

  • Jacobs A, Hoy T, Humphrys J, Perera P (1978) Iron overload in Chang cell cultures:biochemical and morphological studies. Br J Exp Pathol 59:489–498

    PubMed  CAS  Google Scholar 

  • Kattamis C (ed) (1989) Iron overload and chelation in thalassemia. Huber Toronto Klopman G (1968) Chemical reactivity and the concept of charge- and frontier-controlled reactions. J Am Chem Soc 90:223–234

    Google Scholar 

  • Kontoghiorghes GJ, Bartlett AN, Hoffbrand AV, Goddard JG, Sheppard L, Barr J, Nortey P (1990) Long-term trial with the oral iron chelator l,2-dimethyl-3-hydroxypyrid-4-one (L1). I. Iron chelation and metabolic studies. Br J Haematol 76:295–300

    PubMed  CAS  Google Scholar 

  • Kontoghiorghes GJ, Agarwal MB, Tondury P, Kersten MJ, Jaeger M, Vreugdenhil G, Vania A, Rahman YE (1993) Future of oral iron chelator deferiprone (L1). Lancet 341:1479–1480

    PubMed  CAS  Google Scholar 

  • Latimer WM (1952) Oxidation potentials. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Lee P, Mohammed N, Marshall L, Abeysinghe RD, Hider RC, Porter JB, Singh S (1993) Intravenous infusion pharmacokinetics of desferrioxamine in thalassemic patients. Drug Metab Dispos 21:640–644

    PubMed  CAS  Google Scholar 

  • Leibold EA, Guo B (1992) Iron-dependent regulation of ferritin and transferrin receptor expression by the iron-responsive element binding protein. Annu Rev Nutr 12:345–368

    PubMed  CAS  Google Scholar 

  • Levin VA (1980) Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary permeability. J Med Chem 23:682–684

    PubMed  CAS  Google Scholar 

  • Link G, Athias P, Grynberg A, Pinson A, Hershko C (1989) Effect of iron loading on transmembrane potential, contraction, and automaticity of rat ventricular muscle cells in culture. J Lab Clin Med 113:103–111

    PubMed  CAS  Google Scholar 

  • Link G, Pinson A, Hershko C (1993) Iron loading of cultured cardiac myocytes modifies sarcolemmal structure and increases lysosomal fragility. J Lab Clin Med 121:127–134

    PubMed  CAS  Google Scholar 

  • Lovejoy FH Jr (1982) Chelation therapy in iron poisoning. J Toxicol Clin Toxicol 19:871–874

    PubMed  Google Scholar 

  • Lowery CH, Nienhuis AW (1993) Brief report:treatment with azacitidine of patients with end-stage ß-thalassemia. N Engl J Med 329:845–848

    Google Scholar 

  • Lucarelli G, Angelucci E, Giardini C, Baroncianin D, Galimberti M, Polchi P, Bartolucci M, Muretto P, Albertini F (1993a) Fate of iron stores in thalassemia after bone-marrow transplantation. Lancet 342:1388–1391

    CAS  Google Scholar 

  • Lucarelli G, Galimberti M, Polchi P, Angelucci E, Baronciani D, Giardini C, Andreani M, Agostinelli F, Albertini F, Clift RA (1993b) Marrow transplantation in patients with thalassemia responsive to iron chelation therapy. N Engl J Med 329:840–844

    CAS  Google Scholar 

  • Martell AE (1981) The design and synthesis of chelating agents. In:Martell AE, Anderson WF, Badman DG (eds) Development of iron chelators for clinical use. Elsevier/North-Holland, Amsterdam, pp 67–104

    Google Scholar 

  • Martin RB, Savory J, Brown S, Bertholf RL, Wills MR (1987) Transferrin binding of Al3+ and Fe3+. Clin Chem 33:405–407

    PubMed  CAS  Google Scholar 

  • McLaren GD, Muir WA, Kellermeyer RW (1981) Iron overload disorders:natural history, pathogenesis, diagnosis, and therapy. CRC Crit Rev Clin Lab Sci 19:205–266

    Google Scholar 

  • Modell B, Letsky EA, Flynn DM, Peto R, Weatherall DJ (1982) Survival and desferrioxamine in thalassaemia major. Br Med J 284:1081–1084

    CAS  Google Scholar 

  • Motekaitis RJ, Martell AE (1991) Stabilities of the iron(III) chelates of 1,2-diemethyl-3-hydroxy-4-pyridinone and related ligands. Inorg Chim Acta 183:71–80

    CAS  Google Scholar 

  • Núñez M-T, Gaete V, Watkins JA, Glass J (1990) Mobilization of iron from endocytic vesicles. The effects of acidification and reduction. J Biol Chem 265:6688–6692

    PubMed  Google Scholar 

  • Olivieri NF, Buncic JR, Chew E, Gallant T, Harrison RV, Keenan N, Logan W, Mitchell D, Ricci G, Skarf B, Taylor M, Freedman MH (1986) Visual and auditory neurotoxicity in patients receiving subcutaneous deferoxamine infusions. N Engl J Med 314:869–873

    PubMed  CAS  Google Scholar 

  • Olivieri NF, Koren G, Hermann C, Bentur Y, Chung D, Klein J, St Louis P, Freedman MH, McClelland RA, Templeton DM (1990) Comparison of oral iron chelator L1 and desferrioxamine in iron-loaded patients. Lancet 336:1275–1279

    PubMed  CAS  Google Scholar 

  • Olivieri NF, Koren G, Harris J, Khattak S, Bailey JD, Poon AO, Templeton DM, Reilly BJ (1992a) Growth failure and bony changes induced by deferoxamine. Am J Pediatr Hematol Oncol 14:48–56

    CAS  Google Scholar 

  • Olivieri NF, Koren G, Matsui D, Liu PP, Blendis L, Cameron R, McClelland RA, Templeton DM (1992b) Reduction of tissue iron stores and normalization of serum ferritin during treatment with the oral iron chelator L1 in thalassemia intermedia. Blood 79:2471–2748

    Google Scholar 

  • Parkes JG, Hussain RA, Olivieri NF, Templeton DM (1993) Effects of iron loading on uptake, speciation and chelation of iron in cultured myocardial cells. J Lab Clin Med 122:36–47

    PubMed  CAS  Google Scholar 

  • Perrine SP, Ginder GD, Faller DV, Dover GH, Ikuta T, Witkowska HE, Cai S-P, Vichinsky EP, Olivieri NF (1993) A short-term trial of butyrate to stimulate fetal-globin-gene expression in the ß-globin disorders. N Engl J Med 328:81–86

    PubMed  CAS  Google Scholar 

  • Peterson CM, Graziano JH, Grady RW, Jones RL, Markenson A, Lavi U, Canale V, Gray GF, Cerami A, Miller DR (1979) Chelation therapy in ß-thalassemia major:a one-year double blind study of 2,3-dihydroxybenzoic acid. Exp Hematol 7:74–80

    PubMed  CAS  Google Scholar 

  • Pippard MJ (1989) Clinical use of iron chelation. In:de Sousa M, Brock JH (eds) Iron in immunity, cancer and inflammation. Wiley, Chichester, pp 361–392

    Google Scholar 

  • Pippard MJ, Johnson DK, Finch CA (1982) Hepatocyte iron kinetics in the rat explored with an iron chelator. Br J Haematol 52:211–224

    PubMed  CAS  Google Scholar 

  • Pitt CG (1981) Structure and activity relationships of iron chelating drugs. In:Martell AE, Anderson WF, Badman DG (eds) Development of iron chelators for clinical use. Elsevier/North-Holland, Amsterdam, pp 104–131

    Google Scholar 

  • Poison RJ, Jawed A, Bomford A, Berry H, Williams R (1985) Treatment of rheumatoid arthritis with desferrioxamine:relation between stores of iron before treatment and side effects. Br Med J 291:448

    Google Scholar 

  • Polson RJ, Jawed ASM, Bomford A, Berry H, Williams R (1986) Treatment of rheumatoid arthritis with desferrioxamine. Q J Med 61:1153–1158

    PubMed  CAS  Google Scholar 

  • Ponka P, Borova J, Neuwirt J, Fuchs O (1979) Mobilisation of iron from reticulocytes. FEBS Lett 97:317–321

    PubMed  CAS  Google Scholar 

  • Porter JB, Gyparaki M, Huehns ER, Hider RC (1986) The relationship between lipophilicity of hydroxypyrid-4-one iron chelators and cellular iron mobilization using an hepatocyte culture model. Biochem Soc Trans 14:1180

    CAS  Google Scholar 

  • Porter JB, Gyparaki M, Burke LC, Huehns ER, Sarpong P, Saez V, Hider RC (1988) Iron mobilization from hepatocyte monolayer cultures by chelators:the importance of membrane permeability and the iron-binding constant. Blood 72:1497–1503

    PubMed  CAS  Google Scholar 

  • Porter JB, Huehns ER, Hider RC (1989) The development of iron chelating drugs. Baillieres Clin Haematol 2:257–292

    PubMed  CAS  Google Scholar 

  • Porter JB, Hider RC, Huehns ER (1990) Update on the hydroxypyridinone oral iron-chelating agents. Semin Hematol 27 (2):95–100

    PubMed  CAS  Google Scholar 

  • Propper RD, Shurin SB, Nathan DG (1976) Reassessment of the use of desferrioxamine B in patients with iron overload. N Engl J Med 294:1421–1423

    PubMed  CAS  Google Scholar 

  • Propper RD, Cooper B, Rufo RR, Nienhuis AW, Anderson WF, Bunn HF, Rosenthal A, Nathan DG (1977) Continuous subcutaneous administration of desferrioxamine in patients with iron overload. N Engl J Med 297:418–423

    PubMed  CAS  Google Scholar 

  • Raymond KN, Carrano CJ (1979) Coordination chemistry and microbial iron transport. Accts Chem Res 12:183–190

    CAS  Google Scholar 

  • Raymond KN, Pecoraro VL, Weitl FL (1981) Design of new chelating agents. In:Martell AE, Anderson WF, Badman DG (eds) Development of iron chelators for clinical use. Elsevier/North-Holland, Amsterdam, pp 165–187

    Google Scholar 

  • Raymond KN, Xu J (1994) Siderophore-based hydroxypyridonate sequestering agents. In:Bergeron RJ, Brittenham GM (eds) The development of iron chelators for clinical use. CRC Press, Boca Raton, pp 307–327

    Google Scholar 

  • Reichard P, Ehrenberg A (1983) Ribonucleotide reductase — a radical enzyme. Science 221:514–520

    PubMed  CAS  Google Scholar 

  • Rocchi E, Gilbertinin P, Cassanelli M, Pietrangelo A, Borghi A, Pantaleoni M, Jensen J, Ventura E (1986) Iron removal therapy in porphyria cutanea tarda:phlebotomy versus slow subcutaneous desferrioxamine infusion. Br J Dermatol 114:621–629

    PubMed  CAS  Google Scholar 

  • Salonen JT, Nyyssönen K, Korpela H, Tuomilehto J, Seppänen R, Salonen R (1992) High stored iron levels are associated with excess risk of myocardial infarction in Eastern Finnish men. Circulation 86:803–811

    PubMed  CAS  Google Scholar 

  • Schneider W (1988) Iron hydrolysis and the biochemistry of iron — the interplay of hydroxide and biogenic ligands. Chimia 42:9–20

    CAS  Google Scholar 

  • Schupp T, Toupet C, Divers M (1988) Cloning and expression of two genes of Streptomyces pilosus involved in the biosynthesis of the siderophore desferrioxamine B. Gene 64:179–188

    PubMed  CAS  Google Scholar 

  • Scott JA, An Khaw B, Locke E, Haber E, Homey C (1985) The role of free radical-mediated processes in oxygen-related damage in cultured murine myocardial cells. Circ Res 56:72–77

    PubMed  CAS  Google Scholar 

  • Selden C, Owen M, Hopkins JMP, Peters TJ (1980) Studies on the concentration and intracellular localization of iron proteins in liver biopsy specimens from patients with iron overload with special reference to their role in lysosomal disruption. Br J Haematol 44:593–603

    PubMed  CAS  Google Scholar 

  • Shiloh H, Iancu TC, Bauminger E, Link G, Pinson A, Hershko C (1992) Deferoxamine-induced iron mobilization and redistribution of myocardial iron in cultured rat heart cells:studies of the chelatable iron pool by electron microscopy and Mössbauer spectroscopy. J Lab Clin Med 119:429–437

    Google Scholar 

  • Singh S, Hider RC (1988) Colorimetric detection of the hydroxyl radical:comparison of the hydroxyl-radical-generating ability of various iron complexes. Anal Biochem 171:47–54

    PubMed  CAS  Google Scholar 

  • Singh S, Hider RC, Porter JB (1990) Separation and identification of desferrioxamine and its iron chelating metabolites by high-performance liquid chromatography and fast atom bombardment mass spectrometry:choice of complexing agent and application to biological fluids. Anal Biochem 187:212–219

    PubMed  CAS  Google Scholar 

  • Sirbasku DA, Pakala R, Sato H, Eby JE (1992) Thyroid hormone and apotransferrin regulation of growth hormone secretion by GH1 rat pituitary tumor cells in iron restricted serum-free defined medium. In Vitro Cell Dev Biol 28A:67–71

    Google Scholar 

  • Sjöberg BM, Sanders-Loehr J, Loehr TM (1987) Identification of a hydroxide ligand at the iron center of ribonucleotide reductase by resonance Raman spectroscopy. Biochemistry 26:4242–4247

    PubMed  Google Scholar 

  • Stamatoyannopoulos G, Nienhuis AW (eds) (1990) The regulation of hemoglobin switching. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Stuhne-Sekalec L, Xu SX, Parkes JG, Olivieri NF, Templeton DM (1992) Speciation of tissue and cellular iron with on-line detection by inductively coupled plasma-mass spectrometry. Anal Biochem 205:278–284

    PubMed  CAS  Google Scholar 

  • Summers MR, Jacobs A, Tudway D, Perera P, Ricketts C (1979) Studies in desferrioxamine and ferrioxamine metabolism in normal and iron-loaded subjects. Br J Haematol 42:547–555

    PubMed  CAS  Google Scholar 

  • Tenenbein M, Kowalski S, Sienko A, Bowden DH, Adamsom IYR (1992) Pulmonary toxic effects of continuous desferrioxamine administration in acute iron poisoning. Lancet 339:699–701

    PubMed  CAS  Google Scholar 

  • Theil EC (1987) Ferritin:structure, gene regulation, and cellular function in animals, plants and microorganisms. Annu Rev Biochem 56:289–315

    PubMed  CAS  Google Scholar 

  • Theil EC, Aisen P (1987) The storage and transport of iron in animal cells. In:Winkelmann G, van der Helm G, Neilands JB (eds) Iron transport in microbes, plants and animals. VCH, Weinheim, pp 491–520

    Google Scholar 

  • Tondury P, Kontoghiorghes GJ, Ridolfi-Luthy A, Hirt A, Hoffbrand AV, Lottenbach AM, Sonderegger T, Wagner HP (1990) L1 (l,2-dimethyl-3-hydroxypyrid-4-one) for oral iron chelation in patients with beta-thalassaemia major. Br J Haematol 76:550–553

    PubMed  CAS  Google Scholar 

  • Voogd A, Sluiter W, van Eijk HG, Koster JF (1992) Low molecular weight iron and the oxygen paradox in isolated heart cells. J Clin Invest 90:2025–2055

    Google Scholar 

  • Waldmeier PC, Buchle A-M, Steulet A-F (1993) Inhibition of catechol-O-methyl-transferase (COMT) as well as tyrosine and tryptophan hydroxylase by the orally active iron chelator, l,2-dimethyl-3-hydroxypyridin-4-one (LI, CP20), in rat brain in vivo. Biochem Pharmacol 45:2417–2424

    PubMed  CAS  Google Scholar 

  • Weatherall DJ, Clegg JB (1981) The thalassemia syndromes. Blackwell, Oxford

    Google Scholar 

  • Wolfe LC, Olivieri NF, Sallan D, Colan S, Rose V, Propper R, Freedman MH, Nathan DG (1985) Prevention of cardiac disease by subcutaneous deferoxamine in patients with thalassemia major. N Engl J Med 312:1600–1603

    PubMed  CAS  Google Scholar 

  • Wolfe LC (1990) Desferrithiocin. Semin Hematol 27:117–120

    PubMed  CAS  Google Scholar 

  • Zevin S, Link G, Grady RW, Hider RC, Peter RR, Hershko C (1992) Origin and fate of iron mobilized by the 3-hydroxypyridin-4-one oral chelators:studies in hypertransfused rats by selective radioiron probes of reticuloendothlial and hepatocellular iron stores. Blood 79:248–253

    PubMed  CAS  Google Scholar 

  • Zurlo MG, De Stefano P, Borgna-Pignatti C, Di Palma A, Piga A, Melevendi C, Di Gregorio F, Burattini MG, Terzoli S (1989) Survival and causes of death in thalassemia major. Lancet 2:27–30

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Templeton, D.M. (1995). Therapeutic Use of Chelating Agents in Iron Overload. In: Goyer, R.A., Cherian, M.G. (eds) Toxicology of Metals. Handbook of Experimental Pharmacology, vol 115. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79162-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79162-8_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79164-2

  • Online ISBN: 978-3-642-79162-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics