Skip to main content

13C Nuclear Magnetic Relaxation of Carbohydrate Molecules in Solution

  • Conference paper
NMR of Biological Macromolecules

Part of the book series: NATO ASI Series ((ASIH,volume 87))

Abstract

Nuclear magnetic resonance spectroscopy is a very powerful tool for analyzing the conformation and molecular architecture of carbohydrate molecules. Both ID and 2D methodologies have provided valuable information about small and large molecules, ranging from the anomeric configuration of a monosaccharide to the more complex problem of the sequence of monosaccharide residues that constitute an oligo-, or polysaccharides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allerhand A, Doddrell D and Komorowski D (1971) Natural abundance carbon-13 partially relaxaed Fourier transform nuclear magnetic resonance spectra of complex molecules. J. Chem. Phys. 55: 189–198

    Article  CAS  Google Scholar 

  • Allerhand A and Doddrell D (1971) Strategies in the application of partially relaxed Fourier transform nuclear magnetic resonance spectroscopy in assignments of carbon-13 resonances of complex molecules. Stachyose. J. Am. Chem. Soc. 93: 2777–2779

    Article  CAS  Google Scholar 

  • Berry JM, Hall LD and Wong KF (1977) Concerning the tumbling motion of disaccharides in aqueous solution. Carbohydr. Res. 56: C16-C20

    Article  CAS  Google Scholar 

  • Bock K and Lemieux RU (1982) The conformational properties of sucrose in aqueous solution: Intramolecular hydrogen bonding. Carbohydr. Res. 100: 63–74

    Article  CAS  Google Scholar 

  • Czarniecki MF and Thornton ER (1976) 13C spin-lattice relaxation in neuraminic acids. Evidence for an unsual itramolecular hydrogen bonding network. J. Am. Chem. Soc. 98: 1023–1025

    Article  CAS  Google Scholar 

  • Czarniecki MF and Thornton ER (1977) Carbon-13 nuclear magnetic spin-lattice relaxation in the N-acetylneuraminic acids. Probes for internal dynamics and conformational analysis. J. Am. Chem. Soc. 99: 8273–8278

    Article  CAS  Google Scholar 

  • Czarniecki MF and Thornton ER (1977) Carbon-13 nuclear magnetic resonance of ganglioside sugars. Spin-lattice relaxation probes for structure and microdynamics of cell surface carbohydrates. J. Am. Chem. Soc. 99: 8279–8282

    Article  CAS  Google Scholar 

  • Dais P, Shing TK and Perlin AS (1983) Proton spin-lattice relaxation rates and nuclear Overhauser enhancement, in relation to the stereochemistry of p-D-mannopyranose 1,2-orthoacetates. Carbohydr. Res. 122: 305–313

    Article  CAS  Google Scholar 

  • Dais P and Perlin AS (1983) Motional behavior of 2,3: 5,6-di-O-isopropylidene-a-D-mannopyranoside in solution. A 13C spin-lattice relaxation study. Can. J. Chem. 61: 1542- 1548

    Article  CAS  Google Scholar 

  • Dais P and Perlin AS (1985) Stabilization of the p-furanose form, and kinetics of the tautomerization on D-fructose in dimethylsulfoxide. Carbohydr. Res. 136: 215–223

    Article  CAS  Google Scholar 

  • Dais P and Fainos G (1986) Motional behavior of “asperlin” in solution. A 13C spin-lattice relaxation study. Can. J. Chem. 69: 560–565

    Article  Google Scholar 

  • Dais P and Perlin AS (1986) Chemical shifts of the methyl groups in di-O-isopropylidene furanoses, and their relationship to molecular conformation and site of ring fusion. Spinlattice relaxation measurements and motional characteristics. Carbohydr. Res. 146177–191

    Article  CAS  Google Scholar 

  • Dais P and Perlin AS (1987) Intramolecular hydrogen-bonding and solvation contributions to the relative stability of the p-furanose form of D-fructose in dimethylsulfoxide. Carbohydr. Res. 169: 159–169

    Article  CAS  Google Scholar 

  • Dais P and Perlin AS (1989) A 13C spin-lattice relaxation study of solvent effects on the rotational dynamic of methyl glucosides. Carbohydr. Res. 194 288–195

    Article  CAS  Google Scholar 

  • Harvey JM and Symons MCR (1978) The hydration of monosaccharides. An NMR study. J. Solution Chem. 7: 571–586

    Article  CAS  Google Scholar 

  • Jaques LW, Giant S and Weltner Jr. W (1980) Spin-lattice relaxation times for two isomers of N-acetylneuraminyl lactose. Carbohydr. Res. 80: 207–211

    Article  CAS  Google Scholar 

  • Kovacs H, Bangley S and Kowalewski J (1989) Motional properties of two disaccharides in solution as studied by carbon-13 relaxation and NOE outside the extreme narrowing region. J. Magn. Res. 85: 530–541

    Article  CAS  Google Scholar 

  • London RE (1978) On the interpretation of 13C spin-lattice relaxation sesulting from ring puckering in proline. J. Am. Chem. Soc. 100: 2678–2685

    Article  CAS  Google Scholar 

  • Lyerla Jr. JR and Levy GC (1974) Carbon-13 nuclear spin relaxation. In: Topics in carbon- 13 NMR spectroscopy. Wiley & Sons New York. Vol. 1: 79–148

    Google Scholar 

  • McCain DC and Markley JL (1986) The solution conformation of sucrose: Concentration and temperature dependence. Carbohydrate Res. 152: 73–80

    Article  CAS  Google Scholar 

  • McCain DC and Marklay JL (1986) Rotational spectral density functions for aqueous fructose: Experimental determination using 13C NMR. J. Am. Chem. Soc. 108: 4259–4264

    Article  CAS  Google Scholar 

  • Neszmelyi A, Liptak A and Nanasi P (1977) 13C NMR relaxation times and chemical shifts of the exo and en do isomers of dioxolane-type benzylidene acetals of carbohydrates: Determination of the absolute configuration. Carbohydr. Res. 58: C7-C9

    Article  CAS  Google Scholar 

  • Neszmelyi A, Tori K and Lukacs G (1977) Use of the carbon-13 spin-lattice relaxation times for sugar sequence determination in steroidal oligosaccharides. Chem. Commun. 613–614

    Google Scholar 

  • Serianni AS and Barker R (1982) 13C spin-lattice relaxation times of [1-13C]- enriched carbohydrates. J. Magn. Reson. 49: 335–340

    Article  CAS  Google Scholar 

  • Serianni AS and Barker R (1984) [13C]- enriched tetroses and tetrofuranosides: an evaluation of the relationship between NMR parameters and furanosyl ring conformation. J. Org. Chem. 49: 3292–3300

    Article  CAS  Google Scholar 

  • Woessner DE (1962) Nuclear spin-relaxation in ellipsoids undergoing rotational Brownian motion. J. Chem. Phys. 37: 647–654

    Article  CAS  Google Scholar 

  • Wu GD, Serianni AS and Barker (1983) Stereoselective exchange of methylene protons in methyl tetrofuranosides: Hydroxymethyl group conformations in methyl pentofuranosides. J. Org. Chem. 48: 1750–1757

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dais, P. (1994). 13C Nuclear Magnetic Relaxation of Carbohydrate Molecules in Solution. In: Stassinopoulou, C.I. (eds) NMR of Biological Macromolecules. NATO ASI Series, vol 87. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79158-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79158-1_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79160-4

  • Online ISBN: 978-3-642-79158-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics