Skip to main content

Mechanical Ventilation should be Individually Optimized in Patients with ARDS

  • Conference paper
  • 153 Accesses

Part of the book series: Yearbook of Intensive Care and Emergency Medicine ((YEARBOOK,volume 1995))

Abstract

The mortality of the adult respiratory distress syndrome (ARDS) remains high, but patients who survived the acute phase of the syndrome generally resume productive lives with no serious pulmonary limitations [1–3]. Specific treatments of ARDS should ideally be directed to limit the initial abnormal inflammatory response. However, ARDS therapy is essentially supportive with a central role for mechanical ventilation. Conventional mode of ventilation aimed to obtain “normal” pulmonary function as reflected by arterial blood gases, and some lung injury was accepted as an inevitable consequence [4, 5]. Positive-end expiratory pressure (PEEP) has been early proposed to achieve adequate arterial oxygenation while decreasing FiO2 to limit oxygen toxicity [4, 5]. This type of ventilatory support is frequently associated with high airway pressures and volumes for effective ventilation which, in turn, may worsen the lung injury [7–11]. Optimal ventilation would be the mode achieving adequate gas exchange without increasing the risk of ventilator-induced barotrauma [7, 12]. New strategies have been developed to prevent the lungs exposure to high pressures and to lower minute ventilation [13–15]. All these modes of ventilation introduce a new concept of ventilation which allows “abnormal” respiratory function with hypercapnia [12, 16]. There are no convincing data indicating that any ventilatory mode is superior to others for ARDS patients, both in terms of reduction of morbidity and mortality.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Suchyta MR, Clemmer TP, Elliott CG, Orme JF, Weaver LK (1992) The adult respiratory distress syndrome. A report of survival and modifying factors. Chest 101: 1074–1079

    Article  PubMed  CAS  Google Scholar 

  2. Maunder RJ, Kublis PS, Anardi DM, Hudson LD (1989) Determinants of survival in the adult respiratory distress syndrome (ARDS). Am Rev Respir Dis 139: A220 (Abst)

    Google Scholar 

  3. Bone RC, Balk R, Slotman G, et al (1992) Adult respiratory distress syndrome: Sequence and importance of development of multiple organ failure. Chest 101: 320–326

    Article  PubMed  CAS  Google Scholar 

  4. Petty TL, Ashbaugh DG (1971) The adult respiratory distress syndrome: Clinical features, factors influencing prognosis and principles of management. Chest 60: 233–239

    Article  PubMed  CAS  Google Scholar 

  5. Shapiro BA, Cane RD, Harrison RA (1983) Positive end-expiratory pressure in acute lung injury. Chest 83: 558–563

    Article  PubMed  CAS  Google Scholar 

  6. Slutsky AS (1994) Mechanical ventilation. Intensive Care Med 20: 64–79

    Article  PubMed  CAS  Google Scholar 

  7. Petty LP (1988) The use, abuse, and mystique of positive end-expiratory pressure. Am Rev Respir Dis 138: 475–478

    PubMed  CAS  Google Scholar 

  8. Suter PM, Fairlay HB, Isenberg MD (1975) Optimum end-expiratory airway pressure in patients with acute pulmonary failure. N Engl J Med 292: 284–289

    Article  PubMed  CAS  Google Scholar 

  9. Kirby RR, Downs JB, Civetta JM, et al (1975) High level positive end-expiratory pressure (PEEP) in acute respiratory insufficiency. Chest 67: 156–163

    Article  PubMed  CAS  Google Scholar 

  10. Altmon AR, Johnson TH (1979) Roentgenographic findings in PEEP therapy (indications of pulmonary complications). JAMA 242: 727–730

    Article  Google Scholar 

  11. Glauser FL, Crystal Polatty R, Sessler CN (1988) Worsening oxygenation in the mechanically ventilated patient. Causes, mechanisms and early detection. Am Rev Respir Dis 138: 458–465

    PubMed  CAS  Google Scholar 

  12. Marini J, Kelsen SG (1992) Re-targeting ventilatory objectives in adult respiratory distress syndrome. Am Rev Respir Dis 146: 2–3

    PubMed  CAS  Google Scholar 

  13. Andersen JB (1987) Inverse I/E ratio ventilation with pressure control in catastrophic lung disease in adults. Intensive Care World 4: 21–23

    Google Scholar 

  14. Gurevitch MJ, Van Dyke J, Young ES, Jackson K (1986) Improved oxygenation and lower peak airway pressure in severe adult respiratory distress syndrome. Chest 89: 211–213

    Article  PubMed  CAS  Google Scholar 

  15. Hickling KG, Henderson SJ, Jackson R (1990) Low mortality associated with low volume pressure limited ventilation with permissive hypercapnia in severe adult respiratory distress syndrome. Intensive Care Med 16: 372–377

    Article  PubMed  CAS  Google Scholar 

  16. Pesenti A (1990) Target blood gases during ARDS ventitatory management. Intensive Care Med 16: 349–351

    Article  PubMed  CAS  Google Scholar 

  17. Dreyfuss D, Soler P, Basset G, Saumon G (1988) High inflation pressure pulmonary edema. Am Rev Respir Dis 137: 1159–1164

    PubMed  CAS  Google Scholar 

  18. Hernandez LA, Peevy KJ, Moise AA, Parker JC (1989) Chest wall restriction limits high airway pressure-induced lung injury in young rabbits. J Appl Physiol 66: 2364–2368

    PubMed  CAS  Google Scholar 

  19. Dreyfuss D, Saumon G (1993) Role of tidal volume, FRC, and end-inspiratory volume in the development of pulmonary edema following mechanical ventilation. Am Rev Respir Dis 148: 1194–1203

    PubMed  CAS  Google Scholar 

  20. Rossaint R, Falke KJ, López F, Slama K, Pison U, Zapol WM (1993) Inhaled nitric oxide for the adult respiratory distress syndrome. N Engl J Med 328: 399–405

    Article  PubMed  CAS  Google Scholar 

  21. Gattinoni L, Pesenti A, Mascheroni D, et al (1986) Low-frequency positive-pressure ventilation with extracorporeal CO2 removal in severe acute respiratory failure. JAMA 256: 881–886

    Article  PubMed  CAS  Google Scholar 

  22. Dall’ava-Santucci J, Armaganidis A, Brunet F, et al (1988) Causes of error of respiratory pressure volume curves in paralyzed subjects. J Appl Physiol 64: 42–49

    Google Scholar 

  23. Dall’ava-Santucci J, Armaganidis A, Brunet F, et al (1990) Mechanical effects of PEEP in patients with adult respiratory distress syndrome. J Appl Physiol 68: 843–848

    Google Scholar 

  24. Demling RH, Staub NC, Edmonds LH (1975) Effect of end-expiratory airway pressure on accumulation of extravascular lung water. J Appl Physiol 38: 907–912

    PubMed  CAS  Google Scholar 

  25. Brunet F, Dhainaut JF, Devaux JY, Huyghebaert MF, Villemant D, Monsallier JF (1988) Right ventricular performance in patients with acute respiratory failure. Intensive Care Med 14: 474–477

    Article  PubMed  Google Scholar 

  26. Gattinoni L, D’Andrea L, Pelosi P, Vitale G, Pesenti A, Fumagalli R (1993) Regional effects and mechanism of positive-end-expiratory pressure in early adult respiratory distress syndrome. JAMA 269: 2122–2127

    Article  PubMed  CAS  Google Scholar 

  27. Gattinoni L, Pesenti A, Avalli L, Rossi F, Bombino M (1987) Pressure-volume curve of total respiratory system in acute respiratory failure. Computed tomographic scan study. Am Rev Respir Dis 136: 730–736

    Article  PubMed  CAS  Google Scholar 

  28. Gattinoni L, Pesenti A, Bombino M, et al (1988) Relationship between lung computed tomographic density, gas exchange and PEEP in acute respiratory failure. Anesthesiology 69: 824–832

    Article  PubMed  CAS  Google Scholar 

  29. Brunet F, Jeanbourquin D, Monchi M, et al (1995) Should mechanical ventilation be optimized to blood gases, lung mechanics or thoracic CT scan? Am Respir Crit Care Med (in press)

    Google Scholar 

  30. Maunder RJ, Shuman WP, McHugh JW, Marglin SI, Butler J (1986) Preservation of normal lung region in the adult respiratory distress syndrome. Analysis by computed tomography. JAMA 255: 2463–2465

    Article  PubMed  CAS  Google Scholar 

  31. Gattinoni L, Pelosi P, Vitale G, Pesenti A, D’Andrea L, Mascheroni D (1991) Body position changes redistribute lung computed-tomographic density in patients with acute respiratory failure. Anesthesiology 74: 15–23

    Article  PubMed  CAS  Google Scholar 

  32. Biernacki W, Gould GA, Whyte KF, Flenley DC (1989) Pulmonary hemodynamics, gas exchange, and the severity of emphysema as assessed by quantitative CT scan in chronic bronchitis and emphysema. Am Rev Respir Dis 139: 1509–1515

    Article  PubMed  CAS  Google Scholar 

  33. Matamis D, Lemaire F, Harf A, Brun-Buisson C, Ansquer JC, Atlan G (1984) Total respiratory pressure-volume curves in the adult respiratory distress syndrome. Chest 86: 58–66

    Article  PubMed  CAS  Google Scholar 

  34. Falke KJ (1980) Do changes in lung compliance allow the determination of optimal PEEP? Anaesthesist 29: 165–168

    PubMed  CAS  Google Scholar 

  35. Brunet F, Mira JP, Belghit M, et al (1994) Extracorporeal CO2 removal technique improves oxygenation without causing overinflation. Am Respir Crit Care Med 149: 1557–1562

    CAS  Google Scholar 

  36. Agostini E, d’Angelo E (1985) Statics of the chest wall. In: Lenfant CL (ed) Lung biology in health and disease Vol 29 Part A. M. Dekker; New York pp 259–295

    Google Scholar 

  37. Chelucci GL, Brunet F, DalPava-Santucci J, et al (1991) A single-compartment model cannot describe passive expiration in intubated paralyzed humans. Eur Respir J 4: 458–464

    PubMed  CAS  Google Scholar 

  38. Dall’ava-Santucci J, Brunet F, Nouira S, et al (1992) Passive partitioning of respiratory volumes and time constants in ventilated patients. Eur Respir J 5: 1009–1017

    Google Scholar 

  39. Gerlach H, Pappert D, Lewandowski K, et al (1993) Long-term inhalation with evaluated low doses of nitric oxide for selective improvement of oxygenation in patients with adult respiratory distress syndrome. Intensive Care Med 19: 443–449

    Article  PubMed  CAS  Google Scholar 

  40. Monchi M, Brunet F, Dinh-Xuan A T (1993) Inhaled nitric oxide for the adult respiratory distress syndrome. N Engl Med 329: 206–207

    Article  CAS  Google Scholar 

  41. Mira JP, Monchi M, Brunet F, Fierobe L, Dhainaut JF, Din-Xuan AT (1994) Lack of efficacy of inhaled nitric oxide in ARDS. Intensive Care Med 20: 532

    Article  PubMed  CAS  Google Scholar 

  42. Brunet F, Belghith M, Mira JP, et al (1993) ECCO2R-LFPPV improves arterial oxygenation while reducing risk of pulmonary barotrauma in patients with ARDS. Chest 104: 889–898

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brunet, F., Dhainaut, J.F., Dall’ava-Santucci, J. (1995). Mechanical Ventilation should be Individually Optimized in Patients with ARDS. In: Vincent, JL. (eds) Yearbook of Intensive Care and Emergency Medicine. Yearbook of Intensive Care and Emergency Medicine, vol 1995. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79154-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79154-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58256-4

  • Online ISBN: 978-3-642-79154-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics