Impedance Cardiography: Non-Invasive Monitoring of Hemodynamics in the ICU

  • N. J. M. van der Meer
  • P. M. J. de Vries
Conference paper
Part of the Yearbook of Intensive Care and Emergency Medicine book series (YEARBOOK, volume 1995)


Monitoring of hemodynamics is routinely performed in the ICU. With the introduction of the pulmonary artery catheter, the facility was created for accurate measurement of stroke volume (SV) and pulmonary capillary wedge pressure (PCWP) [1]. Although this was a major step forward, the invasive character of this technique, sometimes leading to serious complications [2–4], made people reluctant to use it. A non-invasive reliable method to monitor hemodynamics including SV, ejection fraction, contractility index and PCWP, would be of enormous benefit. Impedance cardiography might be such a method. It has been actively used to monitor cardiac events for almost thirty years now [5]. This review will discuss the underlying theory, validation, application and recent developments of this non-invasive method.


Coronary Artery Bypass Grafting Pulmonary Capillary Wedge Pressure Electrode Configuration Impedance Signal Impedance Cardiography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ganz W, Donoso R, Marcos H, Forrester J, Swan H JC (1971) A new technique for measurement of cardiac output by thermodilution in man. Am J Cardiol 27: 392–395PubMedCrossRefGoogle Scholar
  2. 2.
    Fletcher EC, Mihalick MJ, Siegel CO (1988) Pulmonary artery rupture during introduction of the Swan-Ganz catheter: Mechanism and prevention. J Crit Care 3: 116–121CrossRefGoogle Scholar
  3. 3.
    Myers ML, Austin TW, Sibbald WJ (1985) Pulmonary artery catheter infections. Ann Surg 201: 237–241PubMedCrossRefGoogle Scholar
  4. 4.
    Putterman C (1989) The Swan-Ganz catheter: A decade of hemodynamic monitoring. J Crit Care 4: 127–146CrossRefGoogle Scholar
  5. 5.
    Kubicek WG, Karnegis JN, Patterson RP, Witsoe DA, Mattson RH (1966) Development and evaluation of an impedance cardiac output system. Aerospace Med 37: 1208–1212PubMedGoogle Scholar
  6. 6.
    Penney BC (1986) Theory and cardiac applications of electrical impedance measurements. Crit Rev Biomed Eng 13: 227–281PubMedGoogle Scholar
  7. 7.
    Patterson RP (1985) Sources of the thoracic cardiogenic electrical impedance signal as determined by a model. Med Biol Eng Comput 23: 411–417PubMedCrossRefGoogle Scholar
  8. 8.
    Kim DW, Baker LE, Pearce JA, Kim WK (1988) Origins of the impedance change in impedance cardiography by a three dimensional finite element model. Trans Biomed Eng 35: 993–1000CrossRefGoogle Scholar
  9. 9.
    Witsoe DA, Kottke FJ (1967) The origin of cardiogenic changes in thoracic electrical impedance. Proc Fed Am Soc Exp Biol 29: 595Google Scholar
  10. 10.
    Yu-tang S, Wen-ti S (1979) Comparative study on measurement of stroke volume by impedance method and electromagnetic flow method. Chin Med J 92: 79–83PubMedGoogle Scholar
  11. 11.
    Thompson FD, Joekes AM, Girling M (1981) Thoracic impedance. Cardiodynamic assessment validation and clinical use. Ciba-GeigyGoogle Scholar
  12. 12.
    Kubicek WG (1989) On the source of peak first time derivative during impedance cardiography. Ann Biomed Eng 17: 459–462PubMedCrossRefGoogle Scholar
  13. 13.
    Harley A (1975) Observations on the origin of the impedance cardiogram. Br Heart J 37: 550–555PubMedGoogle Scholar
  14. 14.
    Karnegis JN, Kubicek WG (1970) Physiological correlates of the thoracic impedance waveform. Am Heart J 79: 519–523PubMedCrossRefGoogle Scholar
  15. 15.
    Labadibi Z, Ehmke DA, Durnin RE, Leaverton PE, Lauer RM (1970) The first derivative thoracic impedance cardiogram. Circulation 41: 651–654Google Scholar
  16. 16.
    Boomsma DI, De Vries J, Orlebeke JF (1989) Comparison of spot and band impedance cardiogram electrodes across different tasks. Psychophysiol 26: 695–699CrossRefGoogle Scholar
  17. 17.
    Sramek BB (1981) Noninvasive technique for measurement of cardiac output by means of electrical impedance. Proc 5th Int Conf Electr Bioimpedance, pp 39–42Google Scholar
  18. 18.
    Penney BC, Patwardhan NA, Wheeler HB (1985) Simplified electrode array for impedance cardiography. Med Biol Engin Comput 23: 1–7CrossRefGoogle Scholar
  19. 19.
    Qu M, Zhang Y, Webster JG, Willis JT (1986) Motion artifact from spot and band electrodes during impedance cardiography. Trans Biomed Eng 33: 1029–1035CrossRefGoogle Scholar
  20. 20.
    Sherwood A, Royal SA, Hutcheson JS, Turner JR (1992) Comparison of impedance cardiographie measurement using band and spot electrodes. Psychophysiol 29: 734–741CrossRefGoogle Scholar
  21. 21.
    Gotshall RW, Sexson WR (1994) Comparison of band and spot electrodes for the measurement of stroke volume by the bioelectric impedance technique. Crit Care Med 22: 420–425PubMedCrossRefGoogle Scholar
  22. 22.
    Woltjer HH, Van der Meer BJM, Bogaard HJ, De Vries PMJ (1995) Comparison between spot and band electrodes and between two equations for calculation of stroke volume by means of impedance cardiography. Med Biol Engin Comput (in press)Google Scholar
  23. 23.
    Van der Meer BJM, Woltjer HH, Sousman AM, et al (1995) Impedance cardiography in clinical medicine: The importance of the equation and electrode configuration (in press)Google Scholar
  24. 24.
    Sramek BB, Rose DM, Miyamoto A (1983) Stroke volume equation with a linear base impedance model and its accuracy, as compared to thermodilution and magnetic flowmeter techniques in humans and animals. Proc 6th Int Conf Electr Bioimpedance pp 38–41Google Scholar
  25. 25.
    Rasmussen JP, Eriksen J, Andersen J (1977) Evaluation of impedance cardiography during anesthesia in extremely obese patients. Acta Anaesth Scand 21: 342–345PubMedCrossRefGoogle Scholar
  26. 26.
    Bernstein DP (ed) (1989) Noninvasive cardiac output measurement. Textbook of Critical Care, WB Saunders, Philadelphia, USA, pp 159–185Google Scholar
  27. 27.
    Bernstein DP (1986) A new stroke volume equation for thoracic electrical bioimpedance: Theory and rationale. Crit Care Med 14: 904–909PubMedCrossRefGoogle Scholar
  28. 28.
    Rocco TP, Dilsizian V, Fischman AJ, Strauss W (1989) Evaluation of ventricular function in patients with coronary artery disease. J Nucl Med 30: 1149–1165PubMedGoogle Scholar
  29. 29.
    Garrard CL, Weissler A, Dodge HT (1970) The relationship of systolic time intervals to ejection fraction in patients with cardiac disease. Circulation 42: 455–462PubMedGoogle Scholar
  30. 30.
    Capan LM, Bernstein DP, Patel KP, Sanger J, Turndorf H (1987) Measurement of ejection fraction by a bioimpedance method. Crit Care Med 15: 402 (Abst)CrossRefGoogle Scholar
  31. 31.
    Miles DS, Gotshall RW, Quinones JD, Wulfeck DW, Kreitzer RD (1990) Impedance cardiography fails to measure accurately left ventricular ejection fraction. Crit Care Med 18: 221–228PubMedCrossRefGoogle Scholar
  32. 32.
    Judy WV, Hall JH, Elliot WC (1983) Left ventricular ejection fraction measured by the impedance cardiographic method. Fed Proc 41: 1006 (Abst)Google Scholar
  33. 33.
    Van der Meer BJM, Oomen M, Vonk-Noordegraaf A, Pijpers R, Plaizier MABD, De Vries PMJM (1995) Determination of ejection fraction by means of impedance cardiography: Good agreement with radionuclide ventriculography (in press)Google Scholar
  34. 34.
    Fuller HD (1994) Evaluation of left ventricular function by impedance cardiography: A review. Prog Cardiovasc Dis 36: 267–273PubMedCrossRefGoogle Scholar
  35. 35.
    Spinale FG, Reines HD, Cook MC, Crawford FA (1989) Noninvasive estimation of extravascular lung water using bioimpedance. J Surg Res 47: 535–540PubMedCrossRefGoogle Scholar
  36. 36.
    Van de Water JM, Miller IT, Milne ENC, Hanson EL, Sheldon GF, Kagey KS (1970) Impedance plethysmography: A noninvasive means of monitoring the thoracic surgery patient. J Thorac Cardiovasc Surg 60: 641–645PubMedGoogle Scholar
  37. 37.
    Kahn MR, Guha SK, Tandon S, Roy SB (1977) Quantitative electrical impedance plethysmography for pulmonary oedema. Med Biol Engin Comput 15: 627–631CrossRefGoogle Scholar
  38. 38.
    Hassan S, Turner P (1983) Systolic time intervals: A review of the method in the noninvasive investigation of cardiac function in health, disease and clinical pharmacology. Postgrad Med J 59: 423–434PubMedCrossRefGoogle Scholar
  39. 39.
    Sheps DS, Petrovick ML, Kizakevich PN, Wolfe C, Craige E (1982) Continuous non-invasive monitoring of left ventricular cardiography-automated derivation of systolic time intervals. Am Heart J 103: 519–524PubMedCrossRefGoogle Scholar
  40. 40.
    Mattar JA, Shoemaker WC, Diament D, et al (1991) Systolic and diastolic time intervals in the critically ill patient. Crit Care Med 19: 1382–1386PubMedCrossRefGoogle Scholar
  41. 41.
    Marks L, Morris S, McDaniels A, Davies WD (1979) Monitoring burn patients at surgery with impedance cardiography and signal averaging microprocessor. Proc AAMI 14th Ann Meet: 167Google Scholar
  42. 42.
    Wilde SW, Miles DS, Durbin RJ, et al (1981) Evaluation of myocardial performance during wheelchair ergometer exercise. Am J Phys Med 60: 277–285PubMedGoogle Scholar
  43. 43.
    Heather LW (1969) A comparison of cardiac output values by the impedance cardiograph and dye dilution technique in cardiac patients. Progress Report No. Na 59-4500 (National Aeronautics and Space Administration, Manned Spacecraft Centre, Houston, Texas): 247Google Scholar
  44. 44.
    Welham KC, Mohapatra SN, Hill DW, Stevenson L (1978) The first derivative of the transthoracic electrical impedance as an index of changes in myocardial contractility in the intact anaesthetized dog. Intensive Care Med 4: 43–50PubMedCrossRefGoogle Scholar
  45. 45.
    Hill DW, Merrifield AJ (1976) Left ventricular ejection and the Heather index measured by noninvasive methods during postural changes in man. Acta Anaesth Scand 20: 313–320PubMedCrossRefGoogle Scholar
  46. 46.
    Mancini R, Kottke FJ, Patterson R, Kubicek W, Olson M (1979) Cardiac output and contractility indices: Establishing a standard in response to low-to-moderate level exercise in healthy men. Arch Phys Med Rehabil 60: 567–572PubMedGoogle Scholar
  47. 47.
    Schieken RM, Patel MR, Falsetti HL, Barnes RW, Laver RM (1978) Effect of aortic valvular regurgitation upon the impedance cardiogram. Br Heart J 40: 958–963PubMedCrossRefGoogle Scholar
  48. 48.
    Schieken RM, Patel MR, Falsetti HL (1980) The effect of acute aortic regurgitation on the transthoracic impedance cardiogram. Catheter Cardiovasc Diagn 6: 61–66CrossRefGoogle Scholar
  49. 49.
    Lamberts R (1984) Impedance cardiography. Thesis, Van Gorcum, Assen, the NetherlandsGoogle Scholar
  50. 50.
    Schieken RM, Patel MR, Falsetti HL, Lauer RM (1981) Effect of mitral valvular regurgitation on the transthoracic impedance cardiogram. Br Heart J 45: 166–172PubMedCrossRefGoogle Scholar
  51. 51.
    Donovan KD, Dobb GJ, Woods WP, Hockings BE (1986) Comparison of transthoracic electrical impedance and thermodilution methods for measuring cardiac output. Crit Care Med 14: 1038–1044PubMedCrossRefGoogle Scholar
  52. 52.
    Bernstein DP (1986) Continuous noninvasive real-time monitoring of stroke volume and cardiac output by thoracic electrical bioimpedance. Crit Care Med 14: 898–901PubMedCrossRefGoogle Scholar
  53. 53.
    Appel PL, Kram HB, Mackabee J, Fleming AW, Shoemaker WC (1986) Comparison of measurements of cardiac output by bioimpedance and thermodilution in severely ill surgical patients. Crit Care Med 14: 933–935PubMedCrossRefGoogle Scholar
  54. 54.
    Boldt J, Kling D, Thiel A, Hempelmann G (1986) Nicht-invasive versus invasive Kreislaufüberwachung. Bestimmung des Herzzeitvolumens und des pulmonalen Hydratationszustandes mit Hilfe eines neuen Bioimpedanz-Monitors. Anaesthesist 37: 218–223Google Scholar
  55. 55.
    Introna RP, Pruett JK, Crumrine RC, Cuadrado AR (1988) Use of transthoracic bioimpedance to determine cardiac output in pediatric patients. Crit Care Med 16: 1101–1105PubMedCrossRefGoogle Scholar
  56. 56.
    Jacob F, Mariot J, Frisoni A, et al (1988) Mesure du débit cardiaque par bioimpédance électrique thoracique ou par thermodilution. Ann Fr Anesth Réanim 7: 264–267PubMedCrossRefGoogle Scholar
  57. 57.
    Shoemaker WC, Appel PL, Kram HB, Nathan RC, Thompson JL (1988) Multicomponent noninvasive physiologic monitoring of circulatory function. Crit Care Med 16: 482–490PubMedCrossRefGoogle Scholar
  58. 58.
    Spinale FG, Reines HD, Crawford FA (1988) Comparison of bioimpedance and thermodilution methods for determining cardiac output: Experimental and clinical studies. Ann Thorac Surg 45: 421–425PubMedCrossRefGoogle Scholar
  59. 59.
    Wang XA, Sun HH, Adamson D, Van de Water JM (1989) An impedance cardiography system: A new design. Ann Biomed Eng 17: 535–556PubMedCrossRefGoogle Scholar
  60. 60.
    Gotshall RW, Wood VC, Miles DS (1989) Comparison of two impedance cardiographic techniques for measuring cardiac output. Ann Biomed Eng 17: 495–505PubMedCrossRefGoogle Scholar
  61. 61.
    Kessler G, Enders I (1989) Impedanzkardiographie nach kardiochirurgischen Eingriffen. Anaesthesiol Reanim 14: 227–233PubMedGoogle Scholar
  62. 62.
    Preiser JC, Daper A, Parquier JN, Contempré B, Vincent JL (1989) Transthoracic electrical bioimpedance versus thermodilution technique for cardiac output measurement during mechanical ventilation. Intensive Care Med 15: 221–223PubMedCrossRefGoogle Scholar
  63. 63.
    Tibballs J (1989) A comparative study of cardiac output in neonates supported by mechanical ventilation: Measurement with thoracic electrical bioimpedance and pulsed Doppler ultrasound. J Pediatr 114: 632–635PubMedCrossRefGoogle Scholar
  64. 64.
    Easterling TR, Benedetti TJ, Carlson KL, Watts DH (1989) Measurement of cardiac output in pregnancy by thermodilution and impedance techniques. Br J Obstet Gynaecol 96: 67–69PubMedCrossRefGoogle Scholar
  65. 65.
    Castor G, Molter G, Helms J, Niedermark I, Altmayer P (1990) Determination of cardiac output during positive end-expiratory pressure: Noninvasive electrical bioimpedance compared with standard thermodilution. Crit Care Med 18: 544–546PubMedCrossRefGoogle Scholar
  66. 66.
    Spahn DR, Schmid ER, Tornic M, et al (1990) Noninvasive versus invasive assessment of cardiac output after cardiac surgery: Clinical validation. J Cardiothorac Anesth 4: 46–59PubMedCrossRefGoogle Scholar
  67. 67.
    Shimizu H, Seki S, Mizuguchi A, Tsuchida H, Watanabe H, Namiki A (1990) Cardiac output monitoring by impedance cardiography in cardiac surgery. Masui 39: 508–512PubMedGoogle Scholar
  68. 68.
    Wong DH, Tremper KK, Stemmer EA, et al (1990) Noninvasive cardiac output: Simultaneous comparison of two different methods with thermodilution. Anesthesiology 72: 784–792PubMedCrossRefGoogle Scholar
  69. 69.
    Thomas AN, Ryan J, Doran BR, Pollard BJ (1991) Bioimpedance versus thermodilution cardiac output measurement: The Bomed NCCOM3 after coronary bypass surgery. Intensive Care Med 17: 383–386PubMedCrossRefGoogle Scholar
  70. 70.
    Jewkes C, Sear JW, Verhoeff F, Sanders DJ, Foex P (1991) Non-invasive measurement of cardiac output by thoracic electrical bioimpedance: A study of reproducibility and comparison with thermodilution. Br J Anaesth 67: 788–794PubMedCrossRefGoogle Scholar
  71. 71.
    O’Connell AJ, Tibballs J, Coulthard M (1991) Improving agreement between thoracic bioimpedance and dye dilution cardiac output estimation in children. Anaesth Intensive Care 19: 434–440PubMedGoogle Scholar
  72. 72.
    Clancy TV, Norman K, Reynolds R, Covington D, Maxwell JG (1991) Cardiac output measurement in critical care patients: Thoracic electrical bioimpedance versus thermodilution. J Trauma 31: 1116–1120PubMedGoogle Scholar
  73. 73.
    Woo MA, Hamilton M, Stevenson LW, Vredevoe DL (1991) Comparison of thermodilution and transthoracic electrical bioimpedance cardiac outputs. Heart Lung 20: 357–362PubMedGoogle Scholar
  74. 74.
    Young JD, McQuillan P (1993) Comparison of thoracic electrical bioimpedance and thermodilution for the measurement of cardiac index in patients with severe sepsis. Br J Anaesth 70: 58–62PubMedCrossRefGoogle Scholar
  75. 75.
    Sageman WS, Amundson DE (1993) Thoracic electrical bioimpedance measurement of cardiac output in postaortocoronary bypass patients. Crit Care Med 21: 1139–1142PubMedCrossRefGoogle Scholar
  76. 76.
    Perrino AC, Lippman A, Ariyan C, O’Connor TZ, Luther M (1994) Intraoperative cardiac output monitoring: Comparison of impedance cardiography and thermodilution. J Cardiothorac Vasc Anesth 8: 24–29PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • N. J. M. van der Meer
  • P. M. J. de Vries

There are no affiliations available

Personalised recommendations