Skip to main content

Mechanical Ventilation in Circulatory Failure

  • Conference paper
Yearbook of Intensive Care and Emergency Medicine

Part of the book series: Yearbook of Intensive Care and Emergency Medicine ((YEARBOOK,volume 1995))

Abstract

Positive pressure ventilation was used for the treatment of pulmonary edema almost 100 years ago [1–2]. During World War II, however, attempts to supply adequate alveolar oxygen tension by raising face-mask pressure in pilots flying at high altitudes were followed in many cases by syncope and loss of consciousness. This phenomenon was considered to be a result of the decrease of venous return (VR) and cardiac output (CO) secondary to the increase of alveolar pressure and to its transmission to the pleural space [3]. This deleterious effect of positive pressure ventilation on cardiac output caused its use to be abandoned in patients with pulmonary edema and heart failure from the late 1940’s through the late 1960’s, when Ashbaugh et al. [4] proposed the use of mechanical ventilation (MV) with positive end-expiratory pressure (PEEP) in the treatment of adult respiratory distress syndrome (ARDS). The widespread use of MV with PEEP that followed this report was associated from the early 1970’s to the possibility of bedside monitoring of cardiovascular function with a Swan- Ganz catheter. This allowed a better understanding of the complex cardiopulmonary interactions. In patients with circulatory failure, the intensivist must be able to understand the consequences of MV on cardiovascular function and to manage correctly, or even to anticipate, their effects on the already compromised tissue oxygenation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Norton NR (1896) Forced respiration in a case of carbolic acid poison. Med Surg Rep (Presbyterian Hospital, New York) 1: 127

    Google Scholar 

  2. Emerson H (1909) Artificial respiration in the treatment of edema of the lung. Ann Inter Med 3: 368–371

    Article  Google Scholar 

  3. Coumand A, Motley HL, Werko L, Richards DL (1948) Physiological studies of the effects of intermittent positive pressure breathing on cardiac output in man. Am J Physiol 152: 162–174

    Google Scholar 

  4. Ashbaugh DG, Bigelow DB, Petty TL (1967) Acute respiratory distress in adults. Lancet 2: 319–323

    Article  PubMed  CAS  Google Scholar 

  5. Even P, Sors H, Safran D, Reynaud P (1980) Interaction between ventilation and circulation in bronchial asthma and pulmonary emphysema. In: Cumming G, Bonsignore G (eds) Pulmonary circulation. Pergamon Press, London, pp 117–120

    Google Scholar 

  6. Pinsky MR (1987) Ventilatory support of the failing circulation: Phasic high intrathoracic pressure support and cardiac cycle specific ventilation. In: Snyder JV, Pinsky MP (eds) Oxygen transport in the critically ill. Year Book Medical Publishers, Chicago, London, pp 475–495

    Google Scholar 

  7. Widdicombe JG (1964) Respiratory reflexes. In: Fenn WD, Rabin H (eds) Handbook of physiology. Section 3: Respiration. American Physiologic Society, Washington DC, pp 585–630

    Google Scholar 

  8. Grenvik A (1966) Respiratory, circulatory and metabolic effects of respiratory treatment. Acta Anaesthesiol Scand (Suppl 19) 88–93

    Google Scholar 

  9. Conway CM (1975) Hemodynamic effects of pulmonary ventilation. Br J Anesth 47: 761–766

    Article  CAS  Google Scholar 

  10. Shepherd JT (1981) The lungs as a receptor sites for cardiovascular regulation. Circulation 63: 1–10

    Article  PubMed  CAS  Google Scholar 

  11. Pinsky MR (1986) Cardiopulmonary interaction: The effects of negative and positive pleural pressure changes on cardiac output. In: Dantzker R (ed) Cardiopulmonary critical care, Grune-Stratton, pp 87–120

    Google Scholar 

  12. Brecher GA, Hubay CA (1955) Pulmonary blood flow and venous return during spontaneous respiration. Circ Res 3: 210–214

    PubMed  CAS  Google Scholar 

  13. Morgan BC, Abel FL, Mullins GL, et al (1966) Flow patterns in cavae, pulmonary artery, pulmonary vein and aorta in intact dogs. Am J Physiol 210: 903–909

    PubMed  CAS  Google Scholar 

  14. Guyton AC, Lones CF, Coleman TE (1963) Graphic analysis of cardiac output regulation. In: Guyton AC, Jones CF (eds) Circulatory physiology: Cardiac output and its regulation. WB Saunders, Philadelphia, pp 237–262

    Google Scholar 

  15. Guyton AC, Lindsey AW, Abernathy B, et al (1957) Venous return at various right atrial pressures and the normal venous return curve. Am J Physiol 189: 690–715

    Google Scholar 

  16. Dhainaut JF (1986) Conference on heart-lung interaction during mechanical ventilation, Paris (Unpublished figures used with permission)

    Google Scholar 

  17. Salmon O, Dhainaut JF (1984) Pathologie respiratoire: Asthme et emphysème bulleux. In: Dhainaut JF, Samii K (eds) Explorations hemodynamiques en reanimation. Masson, Paris, pp 157–168

    Google Scholar 

  18. Matthay RA, Berger HJ (1983) Non-invasive assessment of right and left ventricular function in acute and chronic respiratory failure. Crit Care Med 11: 329–338

    Article  PubMed  CAS  Google Scholar 

  19. Ellman H, Denbin H (1982) Lack of a diverse hemodynamic effect of PEEP in patients with acute respiratory failure. Crit Care Med 10: 706–711

    Article  PubMed  CAS  Google Scholar 

  20. Dhainaut JF, Schlemmer B (1982) Retentissement hémodynamique de la ventilation artificielle. In: Réanimation et Médecine d’Urgence, Ed Expansion Scientifique Française, Paris, pp 224–232

    Google Scholar 

  21. Harrison VC, Heese H, Klein M, et al (1968) The significance of grunting in hyalane membrane disease. Pediatrics 41: 549–559

    PubMed  CAS  Google Scholar 

  22. Brooker JZ, Alderman EL, Harrison DC (1974) Alterations in left ventricular volumes induced by Valsalva maneuver. Br Heart J 36: 713–718

    Article  PubMed  CAS  Google Scholar 

  23. Janicki JS, Weber KT (1980) The pericardium and ventricular interaction, distensibility and function. Am J Physiol 238: H494–H503

    PubMed  CAS  Google Scholar 

  24. Lee KWT, Downes JJ (1983) Pulmonary edema secondary to laryngospasm in children. Anesthesiology 59: 347–349

    Article  PubMed  CAS  Google Scholar 

  25. Jardin FF, Farcot JC, Gueret P, et al (1984) Echocardiographic evaluation of ventricles during continuous positive pressure breathing. J Appl Physiol 56: 619–627

    PubMed  CAS  Google Scholar 

  26. Permutt S, Howell JBL, Proctor DF, et al (1961) Effects of lung inflation on static pressure-volume characteristics of pulmonary vessels. J Appl Physiol 16: 64–70

    PubMed  CAS  Google Scholar 

  27. Whittenberger JL, McGregor M, Berglund E, et al (1960) Influence of state of inflation of the lung on pulmonary vascular resistance. J Appl Physiol 15: 878–882

    PubMed  CAS  Google Scholar 

  28. Bryan-Brown CW (1976) Acute respiratory insufficiency: The state of the art. Respir Ther 6: 19–25

    Google Scholar 

  29. Jardin FF, Farcot JC, Boissante L, et al (1981) Influence of positive end-expiratory pressure on left ventricular performance. N Engl J Med 304: 387–392

    Article  PubMed  CAS  Google Scholar 

  30. Butler J (1983) The heart is in good hands. Circulation 67: 1163–1168

    Article  PubMed  CAS  Google Scholar 

  31. Wallis TW, Robotham JL, Compean R, et al (1983) Mechanical heart-lung interaction with positive end-expiratory pressure. J Appl Physiol 54: 1039–1047

    PubMed  CAS  Google Scholar 

  32. Tobin MJ, Chadha TS, Jenouri G, et al (1983) Breathing patterns: I. Normal subjects. Chest 84: 202–205

    Article  PubMed  CAS  Google Scholar 

  33. Shuler RH, Ensor C, Gunning RE, et al (1942) The differential effects of respiration on the left and right ventricles. Am J Physiol 137: 620–627

    Google Scholar 

  34. Patterson SW, Piper H, Starling EH (1914) The regulation of the heart beat. J Physiol 48: 465–513

    PubMed  CAS  Google Scholar 

  35. Piene H, Sund T (1982) Does normal pulmonary impedance constitute the optimal load for the right ventricle? Am J Physiol 242: H154–H160

    PubMed  CAS  Google Scholar 

  36. Vatner SF, Rutherfold JD (1978) Control of the myocardial contractile state by carotid chemo- and baroreceptors and pulmonary inflation reflexes in conscious dogs. J Clin Invest 63: 1593–1601

    Article  Google Scholar 

  37. Glick G, Wechsler AS, Epstein SE (1969) Reflex cardiovascular depression produced by stimulation of pulmonary strech receptors in the dog. J Clin Invest 48: 467–472

    Article  PubMed  CAS  Google Scholar 

  38. Painal AS (1973) Vagal sensory receptors and their reflex effects. Physiol Rev 53: 59–88

    Google Scholar 

  39. Cassidy SS, Eschembracher WL, Johnson RJ Jr (1979) Reflex cardiovascular depression during unilateral lung hyperinflation in the dog. J Clin Invest 64: 620–629

    Article  PubMed  CAS  Google Scholar 

  40. Schrender JJ, Jansen JRC, Versprill A (1984) Contribution of lung strech depressor reflex to nonlinear fall in cardiac output during PEEP. J Appl Physiol 56: 1578–1582

    Google Scholar 

  41. Lefant C, Howell BJ (1960) Cardiovascular adjustments in dogs during continuous pressure breathing. J Appl Physiol 15: 425–428

    Google Scholar 

  42. Zehr JE, Hasbarger JA, Risz KD (1976) Reflex suppression of renin secretion during distention of cardiopulmonary receptors in dogs. Circ Res 38: 232–239

    PubMed  CAS  Google Scholar 

  43. Priebe HJ, Heimann JC, Hedley-Whyte J (1981) Mechanisms of renal dysfunction during positive end-expiratory pressure ventilation. J Appl Physiol 50: 643–649

    PubMed  CAS  Google Scholar 

  44. Brennan CA Jr, Malvin RL, Joachim KE (1971) Influence of right and left atrial receptors on plasma concentrations of ADH and renin. Am J Physiol 221: 273–278

    PubMed  CAS  Google Scholar 

  45. Westendrop RGJ, Meinders AE (1994) Atrial natriuretic peptide modulates pulmonary pathophysiology. In: Vincent JL (ed) Update in intensive care and emergency medicine, Springer Verlag, Berlin, pp 374–383

    Google Scholar 

  46. Nanas S, Magder S (1992) Adaptations of the peripheral circulation to PEEP. Am Rev Respir Dis 146: 688–893

    PubMed  CAS  Google Scholar 

  47. Scharf SM (1992) Cardiovascular effects of positive pressure ventilation. J Crit Care 7: 268–279

    Article  Google Scholar 

  48. Fessier HE, Brower RG, Wise RA, et al (1991) Effects of positive end-expiratory pressure on the gradient for venous return. Am Rev Respir Dis 143: 19–24

    Google Scholar 

  49. Chapin JC, Downs JB, Douglas ME, et al (1979) Lung expansion, airway pressure transmission and positive end-expiratory pressure. Arch Surg 114: 1193–1197

    Article  PubMed  CAS  Google Scholar 

  50. Venus B, Cohen LE, Smith RA (1988) Hemodynamics and intrathoracic pressure transmission during controlled mechanical ventilation and positive end-expiratory pressure in normal and low compliant lungs. Crit Care Med 16: 686–690

    Article  PubMed  CAS  Google Scholar 

  51. Bressak MA, Raffln TA (1987) Importance of venous return, venous resistance and mean circulatory pressure in the physiology and management of shock. Chest 92: 906–912

    Article  Google Scholar 

  52. Takata M, Wise RA, Robotham JL (1990) Effects of abdominal pressure on venus return: Abdominal vascular zone conditions. J Appl Physiol 69: 1961–1972

    PubMed  CAS  Google Scholar 

  53. Takata M, Robotham JL (1992) Effects of inspiratory diaphragmatic descent on inferior vena caval venous return. J Appl Physiol 72: 597–607

    PubMed  CAS  Google Scholar 

  54. Stalcup SA, Mellins RB (1977) Mechanical forces producing pulmonary edema in acute asthma. N Engl J Med 297: 592–596

    Article  PubMed  CAS  Google Scholar 

  55. Jardin F, Dubourg O, Margairaz A, et al (1987) Inspiratory impairment in right ventricular performance during acute asthma. Chest 92: 789–795

    Article  PubMed  CAS  Google Scholar 

  56. Pontoppidan H, Green B, Lowenstein E (1972) Acute respiratory failure in the adult. N Engl J Med 87: 690–698

    Article  Google Scholar 

  57. Canada E, Benumof JL, Tousdale FR (1982) Pulmonary vascular resistance correlated in intact normal and abnormal canine lungs. Crit Care Med 10: 719–723

    Article  PubMed  CAS  Google Scholar 

  58. Brienza A, Dambrosio M, Bruno F, et al (1988) Right ventricular ejection fraction measurement in moderate acute respiratory failure (ARF). Effects of PEEP. Intensive Care Med 14: 478–482

    Article  PubMed  Google Scholar 

  59. Schulman DS, Biondi JW, Matthay RA, et al (1988) Effect of positive end-expiratory pressure on right ventricular performance. Am J Med 84: 57–67

    Article  PubMed  CAS  Google Scholar 

  60. Neidhart PP, Suter PM (1988) Changes of right ventricular function with positive end- expiratory pressure (PEEP) in man. Intensive Care Med 14: 471–473

    Article  PubMed  Google Scholar 

  61. Dhainaut JF, Aouate Ph, Brunet F (1989) Circulatory effects of positive end-expiratory pressure in patients with acute lung injury. In: Scharf SM, Cassidy SSW (eds) Heart-lung interactions in health and disease. Marcel Dekker, New York, pp 809–838

    Google Scholar 

  62. Brinker JA, Weiss I, Lappe DL, et al (1980) Leftward septal displacement during right ventricular loading in man. Circulation 61: 626–633

    PubMed  CAS  Google Scholar 

  63. Schulman DS, Biondi JW, Zohghi S, et al (1992) Left ventricular diastolic function during positive end-expiratory pressure. Am Rev Respir Dis 145: 515–521

    PubMed  CAS  Google Scholar 

  64. Schulman DS, Biondi JW, Zohghi S, et al (1990) Coronary flow limits right ventricular performance during positive end-expiratory pressure. Am Rev Respir Dis 141: 1531–1537

    PubMed  CAS  Google Scholar 

  65. Fewall JE, Abendschein DR, Carlson J, et al (1981) Mechanisms of decreased right and left ventricular end-diastolic volumes during continuous positive pressure ventilation in dogs. Circ Res 47: 467–472

    Google Scholar 

  66. Marini JJ, O’Quin R, Culver BH, et al (1982) Estimation of transmural cardiac pressures during ventilation with PEEP. J Appl Physiol 53: 384–391

    PubMed  CAS  Google Scholar 

  67. Bell RC, Robotham JL, Badke RR, et al (1987) Left ventricular geometry during intermittent positive pressure ventilation in dogs. J Crit Care 2: 230–244

    Article  Google Scholar 

  68. Cassidy SS, Ramanathan M (1984) Dimensional analysis of the left ventricle during PEEP: Relative septal and lateral wall displacements. Am J Physiol 246: H792–H805

    PubMed  CAS  Google Scholar 

  69. Scharf SM, Brown R, Warner KG, et al (1989) Intrathoracic pressures and left ventricular configuration with respiratory maneuvers. J Appl Physiol 66: 481–491

    PubMed  CAS  Google Scholar 

  70. Takata M, Robotham JL (1991) Ventricular external constraint by the lung and pericardium during positive end-expiratory pressure. Am Rev Respir Dis 143: 872–875

    PubMed  CAS  Google Scholar 

  71. Gottfried SB, Rossi A, Milic-Emili J (1986) Hyperinflation dynamique, PEP intrinsèque et ventilation mécanique. Réan Soins Intens Med Urg 2: 197–200

    Google Scholar 

  72. Oswalt CE, Gates GA, Holstrom FMG (1977) Pulmonary edema as a complication of acute upper airway obstruction. JAMA 238: 1833–1835

    Article  PubMed  CAS  Google Scholar 

  73. Stradling JR, Bolton P (1982) Upper airways obstruction as cause of pulmonary edema. Lancet 1: 1353–1354

    Article  PubMed  CAS  Google Scholar 

  74. Navarette-Navaro P, Vazquez G, Fernandez E, et al (1989) Mediastinal, left and right atrial pressure variations with different modes of mechanical and spontaneous ventilation. Crit Care Med 17: 563–566

    Article  Google Scholar 

  75. Pinsky MR (1987) The hemodynamic effects of artificial ventilation. In: Snyder JV, Pinsky MP (eds) Oxygen transport in the critically ill. Year Book Medical Publishers, Chicago, London, pp 319–332

    Google Scholar 

  76. Calvin JE, Driedger AA, Sibbald WJ (1981) Positive end-expiratory pressure (PEEP) does not depress left ventricular function in patients with pulmonary edema. Am Rev Respir Dis 124: 121–128

    PubMed  CAS  Google Scholar 

  77. Pinsky MR, Summer WR, Wise RA, et al (1983) Augmentation of cardiac function by elevation of intrathoracic pressure. J Appl Physiol 54: 950–955

    PubMed  CAS  Google Scholar 

  78. Pinsky MR, Summer WR (1983) Cardiac augmentation by phasic high intrathoracic pressure support in man. Chest 84: 370–375

    Article  PubMed  CAS  Google Scholar 

  79. Pinsky MR, Matuschak GM, Itzkoff JM (1984) Respiratory augmentation of left ventricular function during spontaneous ventilation in severe left ventricular failure by grunting: An auto-CPAP effect. Chest 86: 267–269

    Article  PubMed  CAS  Google Scholar 

  80. Pinsky MR, Matuschak GM, Klain M (1985) Determinants of cardiac augmentation by elevations in intrathoracic pressure. J Appl Physiol 58: 1189–1198

    PubMed  CAS  Google Scholar 

  81. Buda AJ, Pinsky MR, Ingels NB, et al (1979) Effect of intrathoracic pressure on left ventricular performance. N Engl J Med 301: 453–459

    Article  PubMed  CAS  Google Scholar 

  82. Mathru M, Roa RLK, El-Etr AA, et al (1982) Hemodynamic response to changes in ventilatory patterns in patients with normal and poor left ventricular reserve. Crit Care Med 10: 423–426

    Article  PubMed  CAS  Google Scholar 

  83. Bradley DT, Holloway RM, McLaughlin PR, et al (1992) Cardiac output response to continuous positive airway pressure in congestive heart failure. Am Rev Respir Dis 145: 377–382

    PubMed  CAS  Google Scholar 

  84. Dhainaut JF, Aouate P, Monsallier JF, et al (1987) Improvement of right ventricular performance by continuous positive airway pressure in adult respiratory distress syndrome. J Crit Care 2: 15–21

    Article  Google Scholar 

  85. Pinsky MR, Matuschak GM, Bernardi L, et al (1986) Hemodynamic effects of cardiac cycle-specific increases in intrathoracic pressure. J Appl Physiol 60: 604–612

    PubMed  CAS  Google Scholar 

  86. Pinsky MR, Matuschak GM, Rogers RM, et al (1986) Hemodynamic effect of cardiac cycle-specific increases in intrathoracic pressure in normo- and hypovolemia. J Appl Physiol 61: 44–53

    PubMed  Google Scholar 

  87. Pinsky MR, Marquez J, Martin D, et al (1987) Ventricular assist by cardiac cycle-specific increases in intrathoracic pressure. Chest 91: 709–715

    Article  PubMed  CAS  Google Scholar 

  88. Scheidt S, Wilna G, Mueller G, et al (1973) Intra-aortic balloon counterpulsation in cardiogenic shock. N Engl J Med 288: 979–984

    Article  PubMed  CAS  Google Scholar 

  89. Guimond JG, Pinsky MR, Matuschak GM (1990) Effect of synchronous increase in intrathoracic pressure on cardiac performance during endotoxinemia. J Appl Physiol 69: 1502–1508

    PubMed  CAS  Google Scholar 

  90. Brodie TG, Russell AE (1900) On reflex cardiac inhibition. J Physiol 26: 92–106

    PubMed  CAS  Google Scholar 

  91. Jardin FF, Farcot JC, Gueret P, et al (1983) Cyclic changes in arterial pulse during respiratory support. Circulation 68: 266–274

    Article  PubMed  CAS  Google Scholar 

  92. Steinhoff H, Falke K, Schwarzhoff W (1982) Enhanced renal function associated with intermittent mandatory ventilation in acute respiratory failure. Intensive Care Med 8: 69–74

    Article  PubMed  CAS  Google Scholar 

  93. DeGent GE, Greenbaum DM (1993) Mechanical ventilatory support in circulatory shock. Crit Care Clin 9: 377–393

    PubMed  CAS  Google Scholar 

  94. Olsson RA, Bunger R (1987) Metabolic control of coronary blood flow. Prog Cardiovasc Dis 29: 369–387

    Article  PubMed  CAS  Google Scholar 

  95. Hevroy O, Grundes O, Bjertnaes L, et al (1989) Myocardial blood flow and oxygen consumption during positive end-expiratory pressure ventilation at different levels of cardiac inotropy and frequency. Crit Care Med 17: 48–52

    Article  PubMed  CAS  Google Scholar 

  96. Ben Haim SA, Amar R, Shofty R, et al (1991) Low positive end-expiratory pressure improves left ventricular workload versus coronary blood flow relationship. J Cardiovasc Sur 32: 239–245

    CAS  Google Scholar 

  97. Tucker HJ, Murray JF (1973) Effects of end-expiratory pressure on organ blood flow in normal and diseased dogs. J Appl Physiol 34: 573–577

    PubMed  CAS  Google Scholar 

  98. Robertson CH, Cassidy SS (1976) Distribution of the reduced cardiac output induced by continuous positive pressure breathing. Physiologist 19: 341 (Abst)

    Google Scholar 

  99. Tittley JG, Fremes SE, Weisel RD, et al (1985) Hemodynamic and myocardial metabolic consequences of PEEP. Chest 88: 496–502

    Article  PubMed  CAS  Google Scholar 

  100. Johnston WE, Vinten-Johansen J, Shugart HE, et al (1992) Positive end-expiratory pressure potentiates the severity of canine right ventricular ischemia-reperfusion injury. Am J Physiol 262: H168–H176

    PubMed  CAS  Google Scholar 

  101. Lemaire F, Teboul JC, Cinotti L, et al (1988) Acute left ventricular dysfunction during unsuccessful weaning from mechanical ventilation. Anesthesiology 69: 171–179

    Article  PubMed  CAS  Google Scholar 

  102. Hurford WE, Lynch KE, Strauss HW, et al (1991) Myocardial perfusion as assessed by Thallium-200 scintigraphy during discontinuation of mechanical ventilator-dependent patients. Anesthesiology 74: 1007–1016

    Article  PubMed  CAS  Google Scholar 

  103. Taylor RR, Corell JW, Sonnenblick EH, et al (1967) Dependence of ventricular distensibility on filling of the opposite ventricle. Am J Physiol 213: 711–718

    PubMed  CAS  Google Scholar 

  104. Suga H, Sagawa K (1974) Instantaneous pressure-volume relationships and their ratio on the excised, supported canine left ventricle. Circ Res 35: 117–126

    PubMed  CAS  Google Scholar 

  105. Matthay RA, Burger HJ, Davies RA, et al (1980) Right and left ventricular exercise performance in chronic obstructive pulmonary disease: Radionuclide assessment. Ann Intern Med 93: 234–239

    PubMed  CAS  Google Scholar 

  106. Vincent JL, Thirion M, Brimioulle S, et al (1986) Thermodilution measurement of right ventricular ejection fraction with a modified artery catheter. Intensive Care Med 12: 33–39

    Article  PubMed  CAS  Google Scholar 

  107. Assmann R, Falke KJ (1988) Pressure and volume assessment of right ventricular function during mechanical ventilation. Intensive Care Med 14: 467–470

    Article  PubMed  Google Scholar 

  108. Dhainaut JF, Lanore JJ, de Gournay JM, et al (1988) Right ventricular dysfunction in patients with septic shock. Intensive Care Med 14: 488–491

    Article  PubMed  Google Scholar 

  109. Peters J, Robotham JL (1987) Hemodynamic effects of increased intrathoracic pressure. In: Vincent JL, Suter PM (eds) Cardiopulmonary interactions in acute respiratory failure, Springer Verlag, Berlin, pp 120–134

    Chapter  Google Scholar 

  110. Agostoni E (1972) Mechanics of the pleural space. Physiol Rev 52: 57–128

    PubMed  CAS  Google Scholar 

  111. McMachon SM, Permutt S, Proctor DF (1969) A model to evaluate pleural surface pressure measuring devices. J Appl Physiol 27: 886–871

    Google Scholar 

  112. Baydur A, Behrakis P, Walter AZ, et al (1982) A simple method for assessing the validity of the esophageal balloon technique. Am Rev Respir Dis 126: 788–791

    PubMed  CAS  Google Scholar 

  113. Marini JJ (1991) Assessment of the work of breathing in the critically ill. In: Vincent JL (ed) Update in intensive care and emergency medicine, Springer Verlag, Berlin, pp 239–251

    Google Scholar 

  114. West JB (1979) Respiratory physiology: The essentials. Williams-Wilkins Co, Baltimore

    Google Scholar 

  115. Cassidy SS, Mitchell JH, Johnson RL (1982) Dimensional analysis of right and left ventricles during positive pressure ventilation in dogs. Am J Physiol 242: H549–H556

    PubMed  CAS  Google Scholar 

  116. Laver M, Strauss H, Pohost G (1979) Right and left ventricular geometry: Adjustments during acute respiratory failure. Crit Care Med 7: 509–519

    Article  PubMed  CAS  Google Scholar 

  117. Roussos C (1988) Mechanical ventilation in cardiogenic and septic shock. In: Vincent JL (ed) Update in intensive care and emergency medicine, Springer Verlag, Berlin, pp 753–757

    Google Scholar 

  118. Aubier M, Trippenbach T, Roussos C (1981) Respiratory muscle fatigue during cardiogenic shock. J Appl Physiol 51: 499–508

    PubMed  CAS  Google Scholar 

  119. Aubier M, Viires N, Sillye G, Mozes R, Roussos C (1982) Respiratory muscles contribution to lactic acidosis in low cardiac output. Am Rev Respir Dis 126: 642–652

    Google Scholar 

  120. Viires N, Sillye G, Aubier M, Rassidakis A, Roussos C (1983) Regional blood flow distribution in dog during induced hypotension and low cardiac output. Spontaneous breathing versus artificial ventilation. J Clin Invest 72: 935–947

    Article  PubMed  CAS  Google Scholar 

  121. Hussain SNA, Simkus G, Roussos C (1985) Ventilatory muscle fatigue: The cause of respiratory failure in septic shock. J Appl Physiol 58: 2033–2040

    PubMed  CAS  Google Scholar 

  122. Roussos C, Macklem PT (1982) The respiratory muscles. N Engl J Med 307: 786–795

    Article  PubMed  CAS  Google Scholar 

  123. Roussos C (1985) Structure and function of the thorax: Energetics. In: Roussos C, Macklem PT (eds) The Thorax. Marcel Dekker, New York, pp 437–492

    Google Scholar 

  124. Peretz DI, McGregor M, Dossetor JB (1984) Lactic acidosis: A clinically significant aspect of shock. Can Med Assoc J 90: 673–675

    Google Scholar 

  125. Blair E, Cowley A, Tait MK (1965) Refractory septic shock in man: Role of lactate and pyruvate metabolism in prognosis. Ann Surg 31: 537–540

    CAS  Google Scholar 

  126. Vincent JL, Dufaye P, Berré J, et al (1983) Serial lactate determinations during circulatory shock. Crit Care Med 11: 449–451

    Article  PubMed  CAS  Google Scholar 

  127. Roussos C (1991) The oxygen consumption of the respiratory muscles. In: Benito S, Net A (eds) Pulmonary function in mechanically ventilated patients. Springer Verlag, Berlin, pp 328–336

    Chapter  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Armaganidis, A., Kotanidou, A., Roussos, C. (1995). Mechanical Ventilation in Circulatory Failure. In: Vincent, JL. (eds) Yearbook of Intensive Care and Emergency Medicine. Yearbook of Intensive Care and Emergency Medicine, vol 1995. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79154-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79154-3_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58256-4

  • Online ISBN: 978-3-642-79154-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics