Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 197))

Abstract

Recent studies have demonstrated that introduction of sense gene constructs in plants can result in transgenic plants which express the transgene but also in plants with suppressed levels of transgene expression (reviewed by Jorgensen 1991; Kooter and Mol 1993; Matzke and Matzke 1993). In many silencing cases, the transgene and homologous host genes are coordinately suppressed in the plants, a phenomenon called co-suppression (Napoli et al. 1990). Although the underlying mechanism(s) are unknown, co-suppression has been reported in different plant species, and thus may represent a new approach to the manipulation of gene expression in plants. The finding that the presence of transgenes can influence the expression of resident genes via a homology-based mechanism opens up the possibility that this type of gene regulation may be naturally occurring in plants. A major challenge now is to unravel the molecular mechanism(s) responsible for transgene-induced gene silencing in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angenent GC, Franken J, Busscher M, Colombo L, van Tunen AJ (1993) Petal and stamen formation in petunia is regulated by the homeotic gene fbpl. Plant J 4: 101–112

    Article  PubMed  CAS  Google Scholar 

  • Angenent GC, Franken J, Busscher M, Weiss D, van Tunen AJ (1994) Co-suppression of the petunia homeotic gene fbp2 affects the identity of the generative meristem. Plant J 5: 33–34

    Article  PubMed  CAS  Google Scholar 

  • Bol JF, Linthorst HJM, Cornelissen BJC (1990) Plant pathogenesis-related proteins induced by virus infection. Annu Rev Phytopathol 28: 113–138

    Article  CAS  Google Scholar 

  • Brusslan JA, Karlin-Neumann GA, Huang L, Tobin EM (1993) An Arabidopsis mutant with a reduced level of cab140 RNA is a result of cosuppression. Plant Cell 5: 667–677

    Article  PubMed  CAS  Google Scholar 

  • Burd CG, Dreyfuss G (1994) RNA binding specificity of hnRNP A1: significance of hnRNP A1 high-affinity binding sites in pre-mRNA splicing. EMBO J 13: 1197–1204

    PubMed  CAS  Google Scholar 

  • Castresana C, de Carvalho F, Gheysen G, Habets M, Inzé D, Van Montagu M (1990) Tissue-specific and pathogen-induced regulation of a Nicotiana plumbaginifolia β-1,3-glucanase gene. Plant Cell 2: 1131–1143

    Article  PubMed  CAS  Google Scholar 

  • Cordero MJ, Raventós D, San Segundo B (1994) Differential expression and induction of chitinases and β-1,3-glucanases in response to fungal infection during germination of maize seeds. Mol Plant Microbe Interact 7: 23–31

    Article  CAS  Google Scholar 

  • Coté F, Cutt JR, Asselin A, Klessig DF (1991) Pathogenesis-related acidic β-1,3-glucanase genes of tobacco are regulated by both stress and developmental signals. Mol Plant Microbe Interact 4: 173–181

    Article  PubMed  Google Scholar 

  • Cutt JR, Klessig DF (1992) Pathogenesis-related proteins. In: Boiler T, Meins F (eds) Genes involved in plant defense. Springer, Vienna New York, pp 209–243 (Plant gene research series)

    Google Scholar 

  • Dargemont C, Kuhn LC (1992) Export of mRNA from microinjected nuclei of Xenopus laevis oocytes. J Cell Biol 118: 1–9

    Article  PubMed  CAS  Google Scholar 

  • de Carvalho F, Gheysen G, Kushnir S, Van Montagu M, Inzé D, Castresana C (1992) Suppression of (3–1,3-glucanase transgene expression in homozygous plants. EMBO J 11: 2595–2602

    PubMed  Google Scholar 

  • De Loose M, Alliotte T, Gheysen G, Genetello C, Gielen J, Soetaert P, Van Montagu M, Inzé D (1988) Primary structure of a hormonally regulated p-glucanase of Nicotiana plumbaginifolia. Gene 70: 13–23

    Article  PubMed  Google Scholar 

  • Elkind Y, Edwards R, Mavandad M, Hedrick SA, Ribak O, Dixon RA, Lamb CJ (1990) Abnormal plant development and down-regulation of phenylpropanoid biosynthesis in transgenic tobacco containing a heterologous phenylalanine ammonia-lyase gene. Proc Natl Acad Sci USA 87: 9057–9061

    Article  PubMed  CAS  Google Scholar 

  • Gheysen G, Inzé D, Soetaert P, Van Montagu M, Castresana C (1990) Sequence of a Nicotiana plumbaginifolia β(1,3)-glucanase gene encoding a vacuolar isoform. Nucleic Acids Res 18: 685

    Article  Google Scholar 

  • Goring DR, Thomson L, Rothstein SJ (1991) Transformation of a partial nopaline synthase gene into tobacco suppresses the expression of a resident wild-type gene. Proc Natl Acad Sci USA 88: 1770–1774

    Article  PubMed  CAS  Google Scholar 

  • Grierson D, Fray RG, Hamilton AJ, Smith CJS, Watson CF (1991) Does co-suppression of sense genes in transgenic plants involve antisense RNA. Trends Biotechnol 9: 122–123

    Article  Google Scholar 

  • Hart CM, Fischer B, Neuhaus J-M, Meins F Jr (1992) Regulated inactivation of homologous gene expression in transgenic Nicotiana sylvestris plants containing a defense-related tobacco chitinase gene. Mol Gen Genet 235: 179–188

    Article  PubMed  CAS  Google Scholar 

  • Hobbs SLA, Warkentin TD, DeLong CMO (1993) Transgene copy number can be positively or negatively associated with transgene expression. Plant Mol Biol 21: 17–26

    Article  PubMed  CAS  Google Scholar 

  • Høj PB, Hartman DJ, Morrice NA, Doan DNP, Fincher GB (1989) Purification of (1→43)-β-glucan endohydrolase isoenzyme II from germinated barley and determination of its primary structure from a cDNA clone. Plant Mol Biol 13: 31–42

    Article  PubMed  Google Scholar 

  • Jarmolowski A, Boelens WC, Izaurralde E, Mattaj IW (1994) Nuclear export of different classes of RNA is mediated by specific factors. J Cell Biol 124: 627–635

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen R (1991) Silencing of plant genes by homologous transgenes. Agbiotech 4: 265N-273N Kooter JM, Mol JNM (1993) Trans-inactivation of gene expression in plants. Curr Opin Biotechnol 4: 166–171

    Google Scholar 

  • Lindbo JA, Silva-Rosales L, Proebsting WM, Dougherty WG (1993) Induction of a highly specific antiviral state in transgenic plants: implications for regulation of gene expression and virus resistance. Plant Cell 5: 1749–1759

    Article  PubMed  CAS  Google Scholar 

  • Lotan T, Ori N, Fluhr R (1989) Pathogenesis-related proteins are developmentally regulated in tobacco flowers. Plant Cell 1: 881–887

    Article  PubMed  CAS  Google Scholar 

  • Matzke M, Matzke AJM (1993) Genomic imprinting in plants: parental effects and trans-inactivation phenomena. Annu Rev Plant Physiol Plant Mol Biol 44: 53–76

    Article  CAS  Google Scholar 

  • Matzke MA, Neuhuber F, Matzke AJM (1993) A variety of epistatic interactions can occur between partially homologous transgene loci brought together by sexual crossing. Mol Gen Genet 236: 379–386

    Article  PubMed  CAS  Google Scholar 

  • Mauch F, Mauch-Mani B, Boiler T (1988) Antifungal hydrolases in pea tissue. II. Inhibition of fungal growth by combinations of chitinase and β-1,3-glucanase. Plant Physiol 88: 936–942

    Article  PubMed  CAS  Google Scholar 

  • Meins F Jr, Neuhaus J-M, Sperisen C, Ryals J (1992) The primary structure of plant pathogenesis-related glucanohydrolases and their genes. In: Boiler T, Meins F (eds) Genes involved in plant defense. Springer, Vienna, New York, pp 245–282 (Plant gene research series).

    Chapter  Google Scholar 

  • Meyer P, Heidmann I, Niedenhof I (1993) Differences in DNA-methylation are associated with a paramutation phenomenon in transgenic petunia. Plant J 4: 89–100

    Article  PubMed  CAS  Google Scholar 

  • Mol J, Van Blokland R, Kooter J (1991) More about co-suppression. Trends Biotechnol 9: 182–183

    Article  Google Scholar 

  • Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2: 279–289

    Article  PubMed  CAS  Google Scholar 

  • Neale AD, Wahleithner JA, Lund M, Bonnett HT, Kelly A, Meeks-Wagner DR, Peacock WJ, Dennis ES (1990) Chitinase, β-1,3-glucanase, osmotin, and extensin are expressed in tobacco explants during flower formation. Plant Cell 2: 673–684

    Article  PubMed  CAS  Google Scholar 

  • Ori N, Sessa G, Lotan T, Himmelhoch S, Fluhr R (1990) A major stylar matric polypetide (sp41) is a member of the pathogenesis-related proteins superclass. EMBO J 9: 3429–3436

    PubMed  CAS  Google Scholar 

  • Sela-Buurlage MB, Ponstein AS, Bres-Vloemans SA, Melchers LS, van den Elzen PJM, Cornelissen BJC (1993) Only specific tobacco (Nicotiana tabacum) chitinases and β-1,3-glucanases exhibit antifungal activity. Plant Physiol 101: 857–863

    PubMed  CAS  Google Scholar 

  • Seymour GB, Fray RG, Hill P, Tucker GA (1993) Down-regulation of two non-homologous endogenous tomato genes with a single chimaeric sense gene construct. Plant Mol Biol 23: 1–9

    Article  PubMed  CAS  Google Scholar 

  • Smith CJS, Watson CF, Bird CR, Ray J, Schuch W, Grierson D (1990) Expression of a truncated tomato polygalacturonase gene inhibits expression of the endogenous gene in transgenic plants. Mol Gen Genet 224: 477–481

    Article  PubMed  CAS  Google Scholar 

  • van der Krol AR, Mur LA, Beld M, Mol JNM, Stuitje AR (1990) Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 2: 291–299

    Article  PubMed  Google Scholar 

  • Vögeli-Lange R, Frundt C, Hart CM, Beffa R, Nagy F, Meins F Jr (1994) Evidence for a role of β-1,3-glucanase in dicot seed germination. Plant J 5: 273–278

    Article  Google Scholar 

  • Wong Y-S, Maclachlan GA (1980) 1,3-β-D-glucanase from Pisum sativum seedlings. III. Development and distribution of endogenous substrates. Plant Physiol 65: 222–228

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Carvalho Niebel, F., Frendo, P., Inzé, D., Cornelissen, M., van Montagu, M. (1995). Co-suppression of β-1,3-Glucanase Genes in Nicotiana tabacum . In: Meyer, P. (eds) Gene Silencing in Higher Plants and Related Phenomena in Other Eukaryotes. Current Topics in Microbiology and Immunology, vol 197. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79145-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79145-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79147-5

  • Online ISBN: 978-3-642-79145-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics