Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 197))

Abstract

The tomato (Lycopersicori esculentum), and in particular the ripening fruit, has been the subject of numerous experiments involving antisense or sense transgene-mediated suppression of endogenous gene expression in plants, and commercial products developed with these techniques are likely to be on sale in 1995. The efficiency, reliability and technical simplicity of these genetic approaches belies our very limited understanding of how they work. This review discusses how experiments to modify tomato gene expression have provided a wealth of new physiological and biochemical information and the contribution they have made to our understanding of the nature of antisense and sense gene-mediated suppression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Kende H (1993) Ethylene biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 44: 283–307

    Article  CAS  Google Scholar 

  • Kramer M, Sanders R, Bolkan H, Waters C, Sheehy RE, Hiatt WR (1992) Postharvest evaluation of transgenic tomatoes with reduced levels of polygalacturonase: processing, firmness and disease resistance. Postharvest Biol Technol 1:241–255

    Article  CAS  Google Scholar 

  • Lincoln JE, Fischer RL (1988) Diverse mechanisms for the regulation of ethylene inducible gene expression. Mol Gen Genet 212: 71–75

    Article  PubMed  CAS  Google Scholar 

  • Martineau B, Houck CM, Sheehy RE, Hiatt WR (1994) Fruit specific expression of the A. Tumefaciens isopentenyl transferase gene in tomato: effects on fruit ripening and defense-related gene expression in leaves. Plant J 5: 11–19

    Article  CAS  Google Scholar 

  • Matzke MA, Matzke AJM, Mittelsten-Scheid O (1994) Inactivation of repeated genes: DNA-DNA interaction? In: Paszkowski J (ed) Homologous recombination in plants. Kluwer, Amsterdam (in press)

    Google Scholar 

  • McNeil M, Darvill AG, Fry S, Albersheim P (1984) Structure and function of the primary cell walls of plants. Annu Rev Biochem 53: 625–663

    Article  PubMed  CAS  Google Scholar 

  • Meins F Jr (1989) Habituation: heritable variation in the requirement of cultured plant cells for hormones. Annu Rev Genet 23: 395–408

    Article  PubMed  CAS  Google Scholar 

  • Mol J, van Blokland R, Kooter J (1991) More about co-suppression. Trend Biotechnol 9: 182–183

    Article  Google Scholar 

  • Murray JAH (ed) (1992) Antisense RNA and DNA. Wiley Liss, New York

    Google Scholar 

  • Nakajima N, Mori H, Yamazaki K, Imaseki H (1990) Molecular cloning and sequence of a complementary DNA encoding 1 -aminocyclopropane-1 -carboxylate synthase induced by tissue wounding. Plant Cell Physiol 31: 1021–1029

    CAS  Google Scholar 

  • Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimaeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2: 279–289

    Article  PubMed  CAS  Google Scholar 

  • Oeller PW, Min-Wong L, Taylor LP, Pike DA, Theologis A (1991) Reversible inhibition of tomato fruit senescence by antisense RNA. Science 254: 437–439

    Article  PubMed  CAS  Google Scholar 

  • Olson DC, White JA, Edelman L, Harkins RN, Kende H (1991) Differential expression of two tomato genes for 1-aminocyclopropane-1-carboxylate synthase in tomato fruits. Proc Natl Acad Sci USA 88: 5340–5344

    Article  PubMed  CAS  Google Scholar 

  • Pear JR, Sanders RA, Summerfelt KR, Martineau B, Hiatt WR (1993) Simultaneous inhibition of two tomato fruit cell wall hydrolases, pectinmethylesterase and polygalacturonase with antisense gene constructs. Antisense Res Dev 3: 181–190

    PubMed  CAS  Google Scholar 

  • Peharrubia L, Aguilar M, Margossian L, Fischer RL (1992) An antisense gene stimulates ethylene hormone production during tomato fruit ripening. Plant Cell 4: 681–687

    Article  Google Scholar 

  • Picton S, Barton SL, Bouzayen M, Hamilton AJ, Grierson D (1993) Altered fruit ripening and leaf senescence in tomatoes expressing an antisense ethylene forming-enzyme transgene. Plant J 3: 469–481

    Article  CAS  Google Scholar 

  • Prescott AG (1993) A dilemma of dioxygenases (or where biochemistry and molecular biology fail to meet). J Exp Bot 44: 849–861

    Article  CAS  Google Scholar 

  • Pressey R, Avants JK (1982) Solubilisation of cell walls by tomato polygalacturonases: effects of pectinesterases. J Food Biochem 6: 57–74

    Article  CAS  Google Scholar 

  • Roberts K (1990) Structures at the plant cell surface. Curr Opin Cell Biol 2: 920–928

    Article  PubMed  CAS  Google Scholar 

  • Salisbury FB, Ross C (1969) Plant physiology. Wadsworth, Belmont, California, pp 339

    Google Scholar 

  • Sato T, Theologis A (1989) Cloning the mRNA encoding 1-aminocyclopropane-1-carboxylate synthase, the key enzyme for ethylene biosynthesis in plants. Proc Natl Acad Sci USA 86: 6621–6625

    Article  PubMed  CAS  Google Scholar 

  • Schuch W, Kanczler J, Robertson D, Hobson G, Tucker G, Grierson D, Bright S, Bird C (1991) Fruit ripening characteristics of transgenic tomato fruit with altered polygalacturonase activity. Hort Sci 26: 1517–1520

    CAS  Google Scholar 

  • Seymour GB, Lasslett Y, Tucker GA (1987) Differential effects of pectolytic enzymes on tomato polyuronides in vivo and in vitro. Phytochemistry 26: 3137–3139

    Article  CAS  Google Scholar 

  • Seymour GB, Fray RG, Hill P, Tucker GA (1993) Down regulation of two nonhomologous endogenous tomato genes with a single chimeric sense gene construct. Plant Mol Biol 23: 1–9

    Article  PubMed  CAS  Google Scholar 

  • Sheehy RE, Kramer M, Hiatt WR (1988) Reduction of polygalacturonase activity in tomato fruit by antisense RNA. Proc Natl Acad Sci USA 85: 8805–8809

    Article  PubMed  CAS  Google Scholar 

  • Smith CJS, Slater A, Grierson D (1986) Rapid appearance of an mRNA correlated with ethylene synthesis encoding a protein of molecular weight 35000. Planta 168: 94–100

    Article  CAS  Google Scholar 

  • Smith CJS, Watson CF, Ray J, Bird CR, Morris PC, Schuch W, Grierson D (1988) Antisense RNA inhibition of polygalacturonase gene expression in transgenic tomatoes. Nature 334: 724–726

    Article  CAS  Google Scholar 

  • Smith CJS, Watson CF, Morris PC, Bird CR, Seymour GB, Gray JE, Arnold C, Tucker GA, Schuch W, Harding S, Grierson D (1990a) Inheritance and effect on ripening of antisense polygalacturonase genes in transgenic tomatoes. Plant Mol Biol 14: 369–379

    Article  PubMed  CAS  Google Scholar 

  • Abdel-Kader AS, Leonard LM, Maxie EC (1966) Effect of growth regulating substances on the ripening and shelf life of tomatoes. Hort Sci 1: 90–91

    CAS  Google Scholar 

  • Baldwin EA, Pressey R (1988) Tomato polygalacturonase elicits ethylene production in tomato fruit. J Am Soc Hort Sci 113: 92–95

    CAS  Google Scholar 

  • Bartley GE, Viitanen PV, Bacot KO, Scolnik PA (1992) A tomato gene expressed during fruit ripening encodes an enzyme of the carotenoid biosynthesis pathway. J Biol Chem 267: 5036–5039

    PubMed  CAS  Google Scholar 

  • Bennett AB, DellaPenna D (1987) Polygalacturonase: its importance and regulation in ripening. In: Thompson WW, Nothnagel E, Huffaker R (eds) Plant senescence: its biochemistry and physiology. American Society of Plant Physiology, Rockville, MD, pp 98–107

    Google Scholar 

  • Bird CR, Ray JA, Fletcher JD, Boniwell JM, Bird AS, Blain I, Bramley PM, Schuch W (1991) Using antisense RNA to study gene function: inhibition of carotenoid biosynthesis in transgenic tomatoes. Biotechnology 9: 635–639

    Article  CAS  Google Scholar 

  • Brady CJ (1987) Fruit ripening. Annu Rev Plant Physiol 38: 155–178

    Article  CAS  Google Scholar 

  • Brady CJ, Meldrum SK, McGlasson WB, Ali ZM (1983) Differential accumulation of the molecular forms of polygalacturonase in tomato mutants. J Food Biochem 7: 7–14

    Article  CAS  Google Scholar 

  • Bramley P, Teulieres C, Blain I, Bird C, Schuch W (1992) Biochemical characterisation of transgenic tomato plants in which carotenoid synthesis has been inhibited through the expression of antisense RNA to pTOM5. Plant J 2: 343–344

    Article  CAS  Google Scholar 

  • Burg S (1962) The physiology of ethylene formation. Annu Rev Plant Physiol 13: 265–302

    Article  CAS  Google Scholar 

  • Cooper W (1993) Investigations into the interactions of Colletotrichum gloeosporioides and ripening tomato fruit. Ph D thesis. University of Nottingham, UK

    Google Scholar 

  • Davey JE, Van Staden J (1978) Endogenous cytokinins in the fruit of ripening and non-ripening tomatoes. Plant Sci Lett 11: 359–364

    Article  CAS  Google Scholar 

  • de Carvalho F, Gheysen G, Kushnir S, van Montagu M, Inze D, Castresana C (1992) Suppression of p-1,3-glucanase transgene expression in homozygous plants. EMBO J 11: 2595–2602

    PubMed  Google Scholar 

  • Deikman J, Fischer RL (1988) Interaction of a DNA binding factor with the 5′- flanking region of an ethylene responsive fruit ripening gene from tomato. EMBO J 7: 3315–3320

    PubMed  CAS  Google Scholar 

  • Fischer RL, Bennett AB (1991) Role of cell wall hydrolases in fruit ripening. Annu Rev Plant Physiol Plant Mol Biol 42: 675–703

    Article  CAS  Google Scholar 

  • Fray RG, Grierson D (1993) Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and co-suppression. Plant Mol Biol 22: 589–602

    Article  PubMed  CAS  Google Scholar 

  • Fry SC (1986) Cross-linking of matrix polymers in the growing cell walls of angiosperms. Annu Rev Plant Physiol 37: 165–186

    Article  CAS  Google Scholar 

  • Fry SC (1988) The growing plant cell wall: chemical and metabolic analysis. Wiley, New York, pp 332

    Google Scholar 

  • Grierson D, Fray RG, Hamilton AJ, Smith CJS, Watson C (1991) Does co-suppression of sense genes in transgenic plants involve antisense RNA. Trends Biotechnol 9: 122–123

    Article  Google Scholar 

  • Grierson D, Schuch W (1993) Control of ripening. Philos Trans R Soc Lond [Biol] 342: 241–250

    Article  CAS  Google Scholar 

  • Hall LN, Tucker GA, Smith CJS, Watson CF, Seymour GB, Bundick Y, Boniwell JM, Fletcher JD, Ray JA, Schuch W, Bird CR, Grierson D (1993) Antisense inhibition of pectinesterase gene expression in transgenic tomatoes. Plant J 3: 121–129

    Article  CAS  Google Scholar 

  • Hamilton AJ, Lycett GW, Grierson D (1990) Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants. Nature 346: 284–287

    Article  CAS  Google Scholar 

  • Hamilton AJ, Bouzayen M, Grierson D (1991) Identification of a tomato gene for the ethylene-forming enzyme by expression in yeast. Proc Natl Acad Sci USA 88: 7434–7437

    Article  PubMed  CAS  Google Scholar 

  • Hart CM, Fischer B, Neuhaus J-M, Meins F Jr (1992) Regulated inactivation of homologous gene expression in transgenic Nicotiana sylvestris plants containing a defense-related tobacco chitinase gene. Mol Gen Genet 235: 179–188

    Article  PubMed  CAS  Google Scholar 

  • Hobson GE (1963) Pectinesterase in normal and abnormal tomato fruit. Biochem J 86: 358–365

    PubMed  CAS  Google Scholar 

  • Hobson GE (1965) The firmness of tomato fruit in relation to polygalacturonase activity. J Hort Sci 40: 66–72

    CAS  Google Scholar 

  • Holdsworth MJ, Bird CJ, Ray J, Schuch W, Grierson D (1987) Structure and expression of an ethylene-related mRNA from tomato. Nucleic Acids Res 15: 731–739

    Article  PubMed  CAS  Google Scholar 

  • Huber DJ (1983) The role of cell wall hydrolases in fruit softening. Hort Rev 5: 169–219

    CAS  Google Scholar 

  • Jorgensen R (1992) Silencing of plant genes by homologous transgenes. Agbiotech News Inf 4: 265–273

    Google Scholar 

  • Kauss H, Hassid WZ (1967) Enzymic introduction of the methyl ester groups of pectin. J Biol Chem 242: 3449–3453

    CAS  Google Scholar 

  • Smith CJS, Watson CF, Bird CR, Ray J, Schuch W, Grierson D (1990b) Expression of a truncated tomato polygalacturonase gene inhibits expression of the endogenous gene in transgenic plants. Mol Gen Genet 224: 477–481

    Article  PubMed  CAS  Google Scholar 

  • Spanu P, Reinhardt D, Boiler T (1991) Analysis and cloning of the ethylene forming enzyme from tomato by functional expression of its mRNA in Xenopus laevis oocytes. EMBO J 10: 2007–2013

    PubMed  CAS  Google Scholar 

  • Stockhaus J, Höfer M, Renger G, Westhoff P, Wydrzynski T, Willmitzer L (1990) Anti-sense RNA efficiently inhibits formation of the 10 kd polypeptide of the photosystem II in transgenic plants: analysis of the role of the 10 kd protein. EMBO J 9: 3013–3021

    PubMed  CAS  Google Scholar 

  • Tieman DM, Harriman RW, Ramamohan G, Handa AK (1992) An antisense pectin methylesterase gene alters pectin chemistry and soluble solids in tomato fruit. Plant Cell 4: 667–679

    Article  PubMed  CAS  Google Scholar 

  • Tigchelaar EC, McGlasson WB, Buescher RW (1978) Genetic regulation of tomato fruit ripening. J Hort Sci 17: 508–513

    Google Scholar 

  • Van der Krol AR, Lenting PE, Veenstra J, van der Meer IM, Koes RE, Geräts AG, Mol JNM, Stuitje AR (1988) An anti-sense chalcone synthase gene in transgenic plants inhibits flower pigmentation. Nature 333: 866–869

    Article  Google Scholar 

  • Van der Krol AR, Mur LA, Beld M, Mol JNM, Stuitje AR (1990) Flavonoid genes in petunia: addition of a limited number of gene copies may lead to suppression of gene expression. Plant Cell 2: 291–299

    Article  PubMed  Google Scholar 

  • Van der Straeten D, Van Wiemeersch L. Goodman HM, Van Montagu M (1990) Cloning and sequence of two different cDNAs encoding 1-aminocyclopropane-1- carboxylate synthase in tomato. Proc Natl Acad Sci USA 87: 4859–4863

    Article  PubMed  Google Scholar 

  • Varner JE, Lin L-S (1989) Plant cell wall architecture. Cell 56: 231–239

    Article  PubMed  CAS  Google Scholar 

  • Ververidis P, John P (1991) Complete recovery in vitro of ethylene-forming enzyme activity. Phytochemistry 30: 725–727

    Article  CAS  Google Scholar 

  • Wassenegger M, Heimes S, Riedel L, Sanger HL (1994) RNA-directed de novo methylation of genomic sequences in plants. Cell 76: 567–576

    Article  PubMed  CAS  Google Scholar 

  • Yang SF (1981) Biosynthesis of ethylene and its regulation. In: Friend J, Rhodes M J C (eds) Recent advances in the biochemistry of fruit and vegetables. Academic, London, pp 89–106

    Google Scholar 

  • Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol 35: 155–189

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hamilton, A.J., Fray, R.G., Grierson, D. (1995). Sense and Antisense Inactivation of Fruit Ripening Genes in Tomato. In: Meyer, P. (eds) Gene Silencing in Higher Plants and Related Phenomena in Other Eukaryotes. Current Topics in Microbiology and Immunology, vol 197. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79145-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79145-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79147-5

  • Online ISBN: 978-3-642-79145-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics