Olefin Polymerization with Single Component Organoscandium and Organoyttrium Catalysts

  • Barbara J. Burger
  • W. Donald Cotter
  • E. Bryan Coughlin
  • Stephanie T. Chacon
  • Sharad Hajela
  • Timothy A. Herzog
  • Randolf Köhn
  • Jonathan Mitchell
  • Warren E. Piers
  • Pamela J. Shapiro
  • John E. Bercaw


Single component catalysts for polymerization of olefins based on organoscandium and organoyttrium compounds of the types (η 5-C5Me5)2Sc-R, {(η 5-C5Me4)2SiMe2} Sc-R, meso-{(η 5-C5H3-3-CMe3)2SiMe2} Sc-R, {(η 5-C5Me4) SiMe2(η 1-NCMe3)} Sc-R, and the C 2-symmetric complexes rac-{(η 5-C5 H2-2-SiMe3-4-CMe3)2 SiMe2}Y-R (R = H, alkyl) have been prepared. All of these compounds rapidly polymerize ethylene. {(η 5-C5Me4)2SiMe2}Sc-R and meso-{(η 5-C5H3-3-CMe3)2SiMe2} Sc-R catalyze the head-to-tail dimerization of α olefins. (η 5-C5Me4)SiMe2(η 1-NCMe3)}Sc-R produces low molecular weight, essentially atactic polymers from α olefins. [rac-{(η 5-C5H2-2-SiMe3-4-CMe3) 2SiMe2}Y]2(μ-H)2 polymerizes propylene, 1-butene, 1-pentene and 1-hexene to highly isotactic, moderate molecular weight polymers. 13C NMR spectra of the polypropylene so obtained indicates greater than 99% mmmm pentads, with greater than 99.9% 1,2-insertions. The possibility that an α agostic C-H interaction is assisting olefin insertion for these catalysts has been probed using Grubbs’ test of “deuterium isotopic perturbation of stereochemistry.” Our findings implicate an a agostic structure for the transition state for chain propagation. Ground state structures for the ethyl derivatives may also have β agostic interactions. The α agostic transition state has one less rotational degree of freedom, reinforcing the enantiofacial preference of the chiral bis(cyclopentadienyl)metal site, and thus likely contributes to the high enantioselectivity of the C2-symmetricrac-{(η 5 -C5H2-2-SiMe3-4-CMe3)2 SiMe2}Y-R catalyst system.


Ethylene Polymerization Olefin Polymerization Ethylene Oligomer Agostic Interaction Atactic Polypropylene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Manriquez JM, Sanner RD, Marsh RE, Bercaw JE (1976) J Am Chem Soc 98: 8351CrossRefGoogle Scholar
  2. 2.
    Wolczanski PT, Bercaw JE (1980) Acc Chem Res 13: 121CrossRefGoogle Scholar
  3. 3.
    (a) McAlister DR, Erwin DK, Bercaw JE (1978) J Am Chem Soc 100: 5966CrossRefGoogle Scholar
  4. 3(b).
    Bercaw JE (1978) Advances in Chemistry Series 167: 136Google Scholar
  5. 4.
    Thompson ME, Baxter SM, Bulls AR, Burger BJ, Nolan MC, Santarsiero BD, Schaefer WP, Bercaw JE (1987) J Am Chem Soc 109: 203CrossRefGoogle Scholar
  6. 5.
    Watson PL (1982) J Amer Chem Soc 104: 337CrossRefGoogle Scholar
  7. Piers WE, Shapiro PJ, Bunel EE, Bercaw JE (1990) Synlett 74Google Scholar
  8. 7.
    Bulls AR, Manriquez JM, Thompson ME, Bercaw JE (1988) Polyhedron 7: 1409CrossRefGoogle Scholar
  9. 8.
    Brookhart M, Green MLH (1983) J Organomet Chem 250: 395CrossRefGoogle Scholar
  10. 9.
    Burger BJ, Thompson ME, Cotter WD, Bercaw JE (1990) J Amer Chem Soc 112: 1566CrossRefGoogle Scholar
  11. 10.
    Shapiro PJ, Bunel EE, Schaefer WP, Bercaw JE (1990) Organometallics 9: 867CrossRefGoogle Scholar
  12. Shapiro PJ, Cotter WD, Schaefer WP, Labinger JA, Bercaw JE, manuscript in preparationGoogle Scholar
  13. 12.
    Ewen JA, Jones RL, Razavi A, Ferrara JD (1988) J Am Chem Soc 110: 6255CrossRefGoogle Scholar
  14. 13(a).
    Roll W, Brintzinger HH, Rieger B, Zolk R (1990) Angew Chem Int Ed Eng 29: 279CrossRefGoogle Scholar
  15. 13(b).
    Wiesenfeldt H, Reinmuth A, Barsties XX, Evertz K, Brintzinger HH (1989) J Organomet Chem 369: 359CrossRefGoogle Scholar
  16. 14.
    Kaminsky W, Kulper K, Brintzinger HH, Wild FWP (1985) Angew Chem Int Ed Engl 24: 507CrossRefGoogle Scholar
  17. 15.
    Coughlin EB, Bercaw JE (1992) J Am Chem Soc 114: 7606CrossRefGoogle Scholar
  18. 16.
    Marsh RE, Schaefer WP, Coughlin EB, Bercaw JE (1992) Acta Cryst C48: 1773Google Scholar
  19. 17.
    Stern D, Sabat M, Marks TJ (1990) J Am Chem Soc 112: 9558CrossRefGoogle Scholar
  20. 18.
    (a) Stern D, Sabat M, Marks TJ (1990) J Amer Chem Soc 112: 9585Google Scholar
  21. Coughlin EB, Bercaw JE, unpublished resultsGoogle Scholar
  22. 19.
    (a) Roe DC, Watson PL (1982) J Am Chem Soc 104: 6471CrossRefGoogle Scholar
  23. Eshuis JJW, Tan YY, Teuben JH, Renkema J (1990) J Mol Catal 62: 277CrossRefGoogle Scholar
  24. Resconi L, Piemontesi F, Franciscono G, Abis L, Fiorani T (1992) J Am Chem Soc 114: 1025CrossRefGoogle Scholar
  25. Kesti MR, Waymouth RM (1992) J Am Chem Soc 114: 3565CrossRefGoogle Scholar
  26. Hajela SH, Bercaw JE, organometallics submitted for publicationGoogle Scholar
  27. 20.
    Luongo JP (1960) J Polym Sci 42: 139CrossRefGoogle Scholar
  28. 21.
    Danusso F (1967) Polymer 8: 281CrossRefGoogle Scholar
  29. 22.
    Röll W, Brintzinger HH, Reiger B, Zolk R (1990) Angew Chem Int Ed Engl 29: 279CrossRefGoogle Scholar
  30. 23.
    Grassi A, Zambelli A, Resconi L, Albizzata E, Mazzocchi R (1988) Macromolecules 21: 617CrossRefGoogle Scholar
  31. 24.
    Asakura T, Demura M, Nishiyama Y (1991) Macromolecules 24: 2334CrossRefGoogle Scholar
  32. 25.
    Piers WE, Bercaw JE (1990) J Amer Chem Soc 112: 9406CrossRefGoogle Scholar
  33. 26.
    Clawson L, Soto J, Buchwald SL, Steigerwald ML, Grubbs RH (1985) J Amer Chem Soc 107: 3377CrossRefGoogle Scholar
  34. A small amount (ca.2%) of l,6-d2-n-hexane, the noncyclized hydrogénation product is also formed (2H NMR)Google Scholar
  35. The higher proportion of acyclic hydrogénation to l,6-d 2-n-hexane observed with the meso-DpScH catalyst is likely due to the increased steric crowding associated with the cyclization step for the [meso-DpScCHDCH2CH2CH2CH=CHD] intermediate. The hexenyl group undoubtedly resides in the less crowded side of the wedge, forcing the pendant olefin to coordinate from the side blocked by the two tert-butyl substituents of the cyclopentadienyl ligands. Hence, bimolecular hydrogénation to 1-hexene, which is undoubtedly less sensitive to steric effects, competes more effectively for this catalyst.Google Scholar
  36. 29.
    Brintzinger HH, Krauledat H (1990) Angew Chem Int Ed Engl 29: 1412CrossRefGoogle Scholar
  37. Significantly, deuterocyclization of 1, 5-hexadiene with [BpY]2(μ-H)2 yields a 1.40(1):1 ratio of transxis 3-d1-methyl-d1-cyclopentane, approximately the geometric mean (1.40(1)) of these transxis ratiosGoogle Scholar
  38. 31.
    (a) Laverty DT, Rooney J J (1983) J Chem Soc Faraday Trans 79: 869CrossRefGoogle Scholar
  39. Brookhart M, Green MLH (1983) J Organomet Chem 250: 395CrossRefGoogle Scholar
  40. Brookhart M, Green MLH, Wong L (1988) Prog Inorg Chem 36: 1CrossRefGoogle Scholar
  41. 32(a).
    Prosenc MH, Janiak C, Brintzinger HH (1992) Organometallics 11: 4036CrossRefGoogle Scholar
  42. 32(b).
    Kawamura-Kuribayashi H, Koga N, Morokuma K (1992) J Am Chem Soc 114: 8687CrossRefGoogle Scholar
  43. 33(a).
    Jolly CA, Marynick DS (1989) J Am Chem Soc 111: 7968CrossRefGoogle Scholar
  44. Castonguay LA, Rappé AK (1992) J Am Chem Soc 114: 5832CrossRefGoogle Scholar
  45. 34.
    Brookhart M, Volpe Jr AF, Lincoln DM (1990) J Amer Chem Soc 112: 5634CrossRefGoogle Scholar
  46. 35.
    Jordan RF, Bradley PK, Baenziger NC, LaPointe RE (1990) J Amer Chem Soc 112: 1289CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Barbara J. Burger
    • 1
  • W. Donald Cotter
    • 1
  • E. Bryan Coughlin
    • 1
  • Stephanie T. Chacon
    • 1
  • Sharad Hajela
    • 1
  • Timothy A. Herzog
    • 1
  • Randolf Köhn
    • 1
  • Jonathan Mitchell
    • 1
  • Warren E. Piers
    • 1
  • Pamela J. Shapiro
    • 1
  • John E. Bercaw
    • 1
  1. 1.Arnold and Mabel Beckman Laboratories of Chemical SynthesisCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations