Forcefield Calculations on Zirconocene Compounds

  • Klaus Angermund
  • Andreas Hanuschik
  • Matthias Nolte


Depending on the level of accuracy desired, calculations on zirconocene compounds can only be performed by imposing certain restrictions upon the system of interest, which again might limit the transferability of the results to experimental problems. While force field calculations in general are looked at as the lower end of this accuracy scale they can be performed on systems of almost any size, and therefore, at least in principle, allow for the most “realistic” systems to be studied. The quality of the results depend, apart from the force field algorithm used, mainly on the force field parameters necessary to describe the system. Users of most of todays force field programs still face three fundamental problems:

how to handle metal-ligand π-bonds in the context of a valence force field,

how to parameterize metal-ligand interactions and

what level of accuracy can be achieved.


Force Field Torsion Angle Organometallic Compound Valence Angle Rotation Barrier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andrews DH (1939) J Chem Rev 36: 544Google Scholar
  2. 2.
    Maple JR, Dinur U, Hagler AT (1988) Proc Nat Acad Sci USA 85: 5350;CrossRefGoogle Scholar
  3. Maple JR, Thacher TS, Dinur U, Hagler AT (1990) Chem Design Automation News 5(9): 5;Google Scholar
  4. Allured VS, Kelly CM, Landis CR (1991) J Am Chem Soc 113: 1;CrossRefGoogle Scholar
  5. Aleman C, Canela EI, Franco R, Orozco M (1991) J Comp Chem 12: 664CrossRefGoogle Scholar
  6. 3.
    Progam SYBYL versions 5.2–6.0, Tripos Assoc, St. Louis, USAGoogle Scholar
  7. 4.
    Clark M, Cramer RD III, Van Opdenbosch N (1989) J Comp Chem 10: 982CrossRefGoogle Scholar
  8. 5.
    Program DISCOVER versions 2.4–3.1, Biosym Techn, San Diego, USA Angermund K (1992) publication in preparationGoogle Scholar
  9. 6.
    Nolte M (1992) Eine Methode zur Beschreibung von π-Bindungen in Valenzkraftfeldern. Molecular Modelling an Verbindungen mit Zirconocenfragmenten. Thesis, Westfälische Wilhelms-Universität Münster For additional informations please contact the authors.Google Scholar
  10. 7.
    Timofeeva TV, Solovokhotov YL, Struchkov YT (1987) Dokl Akad Nawk SSSR 294: 1173Google Scholar
  11. 8.
    Du Plooy KE, Marais CF, Carlton L, Hunter R, Boeyens JCA, Coville NJ (1989) Inorg Chem 28: 3855CrossRefGoogle Scholar
  12. 9.
    Angermund K, Krüger C, Nolte M (1990) Molecular mechanics calculations and crystal structures of Bis(cyclopentadienyl)zirconium(IV)-dihalides. A new concept for modeling π-bonded systems, in: Elmau 3 Computational methods in chemical design. Molecular modeling theory and experiment, conference proceedings, 15–20 October 1990, Schloß Elmau, Germany, p119Google Scholar
  13. 10.
    Castonguay LA, Rappe AK (1992) J. Am. Chem. Soc. 114: 5832;CrossRefGoogle Scholar
  14. Hart JR, Rappe AK (1993) J. Am. Chem. Soc. 115: 6159CrossRefGoogle Scholar
  15. 11.
    Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB21EW, U.K.Google Scholar
  16. 12.1:
    Petersen JL, Egan Jr JW (1983) Inorg Chem 22: 3571;CrossRefGoogle Scholar
  17. 2:.
    Rodgers RD, Benning MM, Kurihara LK, Moriarty KJ, Rausch MD (1985) J Organmet Chem 293: 51;CrossRefGoogle Scholar
  18. 3:.
    Bortolin R, Patel V, Munday I, Taylor NJ, Carty AJ (1985) J Chem Soc, Chem Commun 456;Google Scholar
  19. 4:.
    Howie RA, McQuillan GP, Thompson DW, Lock GA (1986) J Organoment Chem 303: 213;CrossRefGoogle Scholar
  20. 5:.
    Gallucci JC, Gautheron B, Gugelchuk M, Meinier P, Paquette LA (1987) Organometallics 6: 15;CrossRefGoogle Scholar
  21. 8:.
    Erker G, Nolte R, Aul R, Wilker S, Krüger C, Noe R (1991) J Am Chem Soc 113: 7594;CrossRefGoogle Scholar
  22. 19:.
    Wochner F, Zsolnai L, Huttner G, Brintzinger H-H (1985) J Organomet Chem 288: 69;CrossRefGoogle Scholar
  23. 20:.
    Collins S, Kuntz BA, Taylor NJ, Ward DG (1988) J Organomet Chem 342: 21;CrossRefGoogle Scholar
  24. 22:.
    Saldarriaga-Molina CH, Clearfield A, Bernai I (1974) J Organomet Chem 80: 79; 6–7, 9–18, 21: [6]CrossRefGoogle Scholar
  25. 13.1:
    Hunter WE, Hracir DC, Vann Bynum, Penttila RA, Atwood JL (1983) Organometallics 2: 750;CrossRefGoogle Scholar
  26. 2:.
    Jeffery J, Lappert MF, Luong-Thi NT, Webb M., Atwood JL (1981) J Chem Soc Dalton Trans 1593;Google Scholar
  27. 3:.
    Atwood JL, Barker GK, Holton J, Hunter WE, Lappert MF, Pearce R (1977) J Am Chem Soc 99: 6645;CrossRefGoogle Scholar
  28. 4:.
    Piccolrovazzi N, Pino P, Consiglio G, Sironi A, Moret M (1990) Organometallics 9: 3098;CrossRefGoogle Scholar
  29. 5:.
    Schock LE, Brock CP, Marks TJ (1987) Organometallics 6: 232;CrossRefGoogle Scholar
  30. 6:.
    Lappert MF, Martin TR, Atwood JL, Hunter WE (1980) J Chem Soc Chem Comm 476;Google Scholar
  31. 7:.
  32. 8:.
    Hunter We, Atwood JL, Fachinetti G, Floriani C (1981) J Organomet Chem 204: 67;CrossRefGoogle Scholar
  33. 9:.
    Jones SB, Petersen JL (1985) Organometallics 4: 966CrossRefGoogle Scholar
  34. 10,11:.
    Nugent WA, Thorn DL, Harlow RL (1987) J Am Chem Soc 109: 2788CrossRefGoogle Scholar
  35. 14.
    Erker G, Zwettler R, Krüger C, Noe R, Werner S (1990) J Am Chem Soc 112: 9620;CrossRefGoogle Scholar
  36. Hyla-Kryspin I, Gleiter R, Krüger C, Zwettler R, Erker G (1990) Organometallics 9: 517;CrossRefGoogle Scholar
  37. Erker G, Zwettler R, Krüger C, Hyla-Kryspin I, Gleiter R (1990) Organometallics 9: 524CrossRefGoogle Scholar
  38. 15.
    Pino P, Wei J, Rotzinger B, Arizzi S, Cioni P (1988) In: Quirk RP (ed) Transition Metal Catalysed Polymerisations Ziegler-Natta and Metathesis Polymerisations, Cambridge University Press, Cambridge New York New Rochelle Melbourne Sydney, p 1;Google Scholar
  39. Pino P, Cioni P, Wei J (1987) J Am Chem Soc 109: 6189;CrossRefGoogle Scholar
  40. Consiglio G, Pino P (1982) Top Curr Chem 105: 77;CrossRefGoogle Scholar
  41. Hoffmann R, Lauher JW (1976) J Am Chem Soc 98: 1729CrossRefGoogle Scholar
  42. 16.
    For an overview see literature cited in [10]Google Scholar
  43. 17.
    Cavallo L, Guerra G, Vacatello M, Corradini P (1991) Macromolecules 24: 1784;CrossRefGoogle Scholar
  44. Corradini P, Venditto V, Guerra G (1990) Polymer 31: 530;CrossRefGoogle Scholar
  45. Corradini P, Guerra G, Vacatello M, Oliva L, Cavallo L (1989) Polym Commun 30: 17;Google Scholar
  46. Corradini P, Guerra G, Vacatello M, Villani V (1988) Gazz Chim Ital 118: 173;Google Scholar
  47. 18.
    Kaminsky W, Ahlers A, Möller-Lindenhof N (1989) Angew Chem Int Engl 28: 1216;CrossRefGoogle Scholar
  48. Erker G, Nolte R, Tsay Y-H, Krüger C (1989) Angew Chem Int Engl 28: 628CrossRefGoogle Scholar
  49. 19.
    Wilke G (1988) Angew Chem Int Engl 27: 185CrossRefGoogle Scholar
  50. 20.
    Angermund K, in [19]Google Scholar
  51. 21.
    Hanuschik A (1992) Untersuchungen zur Konformation und Dynamik von stereoregulären Oligo- und Polyvinylverbindungen mit Methoden des computergestützten Moleküldesigns (CAMD). Thesis, Heinrich-Heine-Universität Düsseldorf. For additional information please contact the authors.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Klaus Angermund
    • 1
  • Andreas Hanuschik
    • 1
  • Matthias Nolte
    • 1
  1. 1.Max-Planck-Institut für KohlenforschungMülheim an der RuhrGermany

Personalised recommendations