Skip to main content

The Low Molecular Weight Heat Shock Proteins of Soybean Seedlings

  • Conference paper
Biochemical and Cellular Mechanisms of Stress Tolerance in Plants

Part of the book series: NATO ASI Series ((ASIH,volume 86))

  • 205 Accesses

Abstract

The heat shock (HS) response has been studied extensively for about 30 years since the discovery of the phenomenon in Drosophila in the early 1960s; studies in plants have been restricted generally to less than 15 years. Heat shock is the subject of numerous reviews in recent years (e.g. Craig, 1985; Kimpel and Key, 1985a; Key et al., 1985a; 1985b; Lindquist, 1986; Lindquist and Craig, 1988; Nagao et al., 1986; Key et al., 1987a; 1987b; Nagao and Key, 1989; Nagao et al., 1990; Neumann et al., 1989; Vierling, 1991; Gurley and Key, 1991). Since various aspects of the HS response in a number of plant systems are covered in this volume, the comments of this contribution will focus on our work on the low molecular weight (LMW) heat shock proteins (hsps) of soybean seedlings, much of which is detailed in some of the reviews cited above, with emphasis on expression of the HS genes encoding hsps, and some properties of those proteins, in the 15 to 27 kD range. This relates to a rather unique feature of HS in plants in that most plants synthesize a large number of LMW hsps, and some of these are generally the most abundant hsps expressed in plants. Most other eukaryotes, in contrast, synthesize a limited number of LMW hsps, and these are generally much less abundant than the 70 kD and 83/90 kD hsps, with hsp70 proteins often representing the majority of hsp synthesis in many organisms. Plants synthesize a complement of hsps in the 60 kD, 70 kD, 83/90 kD, and 104/110 kD MW range which appear to be homologs of the corresponding hsps of other eukaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almoguera C, Jordano J (1992) Developmental and environmental concurrent expression of sunflower dry-seed-stored low-molecular-weight heat-shock protein and Lea mRNAs. Plant Mol Biol 19: 781–792

    Article  PubMed  CAS  Google Scholar 

  • Bilang J, Macdonald H, King PJ, Sturm A (1993) A soluble auxin-binding protein from Hyoscyamus muticus is a glutathione S-transferase. Plant Physiol 102: 29–34

    Article  PubMed  CAS  Google Scholar 

  • Chen Q, Lauzon L, DeRocher A, Vierling E (1990) Accumulation, stability, and localization of a major chloroplast heat shock protein. J Cell Biol 110: 1873–1883

    Article  PubMed  CAS  Google Scholar 

  • Cooper P, HO T-HD (1987) Intracellular localization of heat shock proteins in maize. Plant Physiol 84: 1197–1203

    Article  PubMed  CAS  Google Scholar 

  • Craig EA (1985) The heat shock response. CRC Crit Rev Biochem 18: 239–280

    Article  PubMed  CAS  Google Scholar 

  • Czarnecka E, Edelman L, Schoffl F, Key JL (1984) Comparative analysis of physical stress responses in soybean seedlings using cloned heat shock cDNAs. Plant Mol Biol 3: 45–58

    Article  CAS  Google Scholar 

  • Czarnecka E, Gurley WB, Nagao RT, Mosquera LA, Key JL (1985) DNA sequence and transcript mapping of a soybean gene encoding a small heat shock protein. Proc Natl Acad Sci USA 82: 3726–3730

    Article  PubMed  CAS  Google Scholar 

  • Czarnecka E, Nagao RT, Key JL, Gurley WB (1988) Characterization of Gmhsp26-A, a stress gene encoding a divergent heat shock protein of soybean: heavy-metal — induced inhibition of intron processing. Mol Cell Biol 8: 1113–1122

    PubMed  CAS  Google Scholar 

  • DeRocher AE, Helm KW, Lauzon LM, Vierling E (1991) Expression of a conserved family of cytoplasmic low molecular weight heat shock proteins during heat stress and recovery. Plant Physiol 96: 1038–1047

    Article  Google Scholar 

  • DiDomenico BJ, Bugaisky GE, Lindquist W (1982) Heat shock and recovery are mediated by different translations mechanisms. Proc Natl Acad Sci USA 79: 6181–6185

    Article  Google Scholar 

  • Dominov JA, Stenzler L, Lee S, Schwarz JJ, Leisner S, Howell SH (1992) Cytokinins and auxins control the expression of a gene in Nicotians piumbaginifolia cells by feedback regulation. Plant Cell 4: 451–461

    Article  PubMed  CAS  Google Scholar 

  • Droog FNJ, Hooykaas PJJ, Libbenga KR, van der Zaal EJ (1993) Proteins encoded by an auxin-regulated gene family of tobacco share limited but significant homology with glutathione S-transferases and one member indeed shows in vitro GST activity. Plant Mol Biol 21: 965–972

    Article  PubMed  CAS  Google Scholar 

  • Edelman L (1988) The stress responses in soybean to heat shock, arsenite, and cadmium treatments. Ph.D. dissertation. University of Georgia, Athens, Georgia.

    Google Scholar 

  • Edelman L, Czarnecka E, Key JL (1988) Induction and accumulation of heat shockspecific poly(A+)RNAs and proteins in soybean seedlings during arsenite and cadmium treatments. Plant Physiol 86: 1048–1056

    Article  PubMed  CAS  Google Scholar 

  • Gyorgyey J, Gartner A, Nemeth K, Magyar A, Hirt Hf Heberle-Bors E, Dudits D (1991) Alfalfa heat shock genes are differentially expressed during somatic embryogenesis. Plant Mol Biol 16: 999–1007

    CAS  Google Scholar 

  • Gurley WB, Key JL (1991) Transcriptional regulation of the heat shock response: a plant perspective. Biochemistry 30: 1–12

    Article  PubMed  CAS  Google Scholar 

  • Hagen G, Uhrhammer N, Guilfoyle TJ (1988) Regulation of expression of an auxininduced soybean sequence by cadmium. J Biol Chem 263: 6443–6446

    Google Scholar 

  • Helm KW, Vierling E (1990) A member of the eukaryotic superfamily of small heat shock proteins is located in the endomembrane system of Pisum sativum. J Cell Biol 111: 69a

    Google Scholar 

  • Helm KW, LaFayette PR, Nagao RT, Key JL, Vierling E (1993) Localization of small heat shock proteins to the higher plant endomembrane system. Mol Cell Biol 13: 238–247

    PubMed  CAS  Google Scholar 

  • Hernandez LD, Vierling E (1993) Expression of low molecular weight heat-shock proteins under field conditions. Plant Physiol 101: 1209–1216

    PubMed  CAS  Google Scholar 

  • Hsieh M-H, Chen J-T, Jinn T-L, Chen Y-M, Lin C-Y (1992) A class of soybean low molecular weight heat shock proteins. Plant Physiol 99: 1279–1284

    Article  PubMed  CAS  Google Scholar 

  • Itzhaki H, Woodson WR (1993) Characterization of an ethylene-responsive glutathione S-transferase gene cluster in carnation. Plant Mol Biol 22: 43–58

    Article  PubMed  CAS  Google Scholar 

  • Jakob U, Gaestel M, Engel K, Buchner J (1993) Small heat shock proteins are molecular chaperones. J Biol Chem 268: 1517–1520

    PubMed  CAS  Google Scholar 

  • Jinn T-L, Yeh Y-C, Chen Y-M, Lin C-Y (1989) Stabilization of soluble proteins in vitro by heat shock proteins-enriched ammonium sulfate fraction from soybean seedlings. Plant Cell Physiol 30 (4): 463–469

    CAS  Google Scholar 

  • Key JL, Lin C-Y, Chen Y-M (1981) Heat shock proteins of higher plants. Proc Natl Acad Sci USA 78: 3526–3530

    Article  PubMed  CAS  Google Scholar 

  • Key JL, Gurley WB, Nagao RT, Czarnecka E, Mansfield MA (1985a) Multigene families of soybean heat shock proteins. In L van Vloten-Doting, GSP Grout, TC Hall, eds, Molecular Form and Function of the Plant Genome, NATO ASI Series, Series A: Life Sciences, Vol 83, Plenum Press, pp 81–100

    Google Scholar 

  • Key JL, Kimpel J, Vierling E, Lin C-Y, Nagao RT (1985b) Physiological and molecular analyses of the heat shock response in plants. In BG Atkinson, DB Walden, eds, Changes in Eukaryotic Gene Expression in Response to Environmental Stress, Academic Press, Inc., New York, pp 327–348

    Google Scholar 

  • Key JL, Kimpel JA, Nagao RT (1987a) Heat shock gene families of soybean and the regulation of their expression. UCLA Symp Mol Cell Biol 62: 87–97

    CAS  Google Scholar 

  • Key JL, Nagao RT, Czarnecka E, Gurley WB (1987b) Heat stress: expression and structure of heat shock protein genes. In D von Wettstein and NH Chua, eds, Plant Molecular Biology, Plenum Press, New York, pp 87–97

    Google Scholar 

  • Kimpel JA, Key JL (1985a) Heat shock in plants. Trends Biochem. Sci. 10: 353–357

    Google Scholar 

  • Kimpel JA, Key JL (1985b) Presence of heat shock mRNAs in field grown soybeans. Plant Physiol 79: 672–678

    Article  PubMed  CAS  Google Scholar 

  • Kimpel JA, Nagao RT, Goekjian V, Key JL (1990) Regulation of the heat shock response in soybean seedlings. Plant Physiol 94: 988–995

    Article  PubMed  CAS  Google Scholar 

  • Kloppstech K, Meyer G, Schuster G, Ohad I (1985) Synthesis, transport and localization of a nuclear coded 22-kd heat-shock protein in the chloroplast membranes of peas and Chiamydomonas reinhardi. EMBO J 4: 1902–1909

    Google Scholar 

  • Lin C-Y, Roberts JK, Key JL (1984) Acquisition of thermotolerance in soybean seedlings: synthesis and accumulation of heat shock proteins and their cellular localization. Plant Phsyiol 74: 152–157

    Article  CAS  Google Scholar 

  • Lindquist S (1986) The heat shock response. Annu Rev Biochem 55: 1151–1191

    Article  PubMed  CAS  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat shock proteins. Annu Rev Genet 22: 631–677

    Article  PubMed  CAS  Google Scholar 

  • Mansfield M (1986) The heat shock response of soybean: synthesis, accumulation and distribution of the low molecular weight heat shock proteins. Ph.D. dissertation. University of Georgia. Athens, Georgia.

    Google Scholar 

  • Merck KB, Groenen PJTA, Voorter CEM, de Haard-Hoekman WA, Horwitz J, Bloemendal H, de Jong WW (1993) Structural and functional similarities of bovine acrystallin and mouse small heat-shock protein. J Biol Chem 268: 1046–1052

    CAS  Google Scholar 

  • Nagao RT, Czarnecka E, Gurley WB, Key JL (1985) Genes for low-molecular-weight heat shock proteins of soybeans: sequence analysis of a multi-gene family. Mol Cell Biol 5: 3417–3428

    PubMed  CAS  Google Scholar 

  • Nagao RT, Kimpel JA, Vierling E, Key JL (1986) The heat shock response: a comparative analysis. In BJ Miflin, ed, Oxford Surveys of Plant Molecular and Cell Biology, Vol 3, Oxford Univ. Press, Oxford, pp 384–438

    Google Scholar 

  • Nagao RT, Key JL (1989) Heat shock protein genes of plants. In I Vasil, J Schell, eds, Cell Culture and Somatic Cell Genetics of Plants, Vol 6, Academic Press, Inc, New York, pp 297–328

    Google Scholar 

  • Nagao RT, Kimpel JA, Key JL (1990) Molecular and cellular biology of the heatshock response. In J Scandalious, ed, Genomic Responses to Environmental Stresses, Academic Press, Inc., New York, pp 235–274

    Chapter  Google Scholar 

  • Neumann D, Nover L, Parthier B., Reiger R, Scharf K-D (1989) Heat shock and other stress response systems of plants. Biol Zentralbl 108: 1–156

    Google Scholar 

  • Raschke E, Baumann G, Schoffl F (1988) Nucleotide sequence analysis of soybean small heat shock genes belonging to two different multigene families. J Mol Biol 199: 549–557

    Article  PubMed  CAS  Google Scholar 

  • Roberts JK, Key JL (1991) Isolation and characterization of a soybean hsp70 gene. Plant Mol Biol 16: 671–683

    Article  PubMed  CAS  Google Scholar 

  • Schatz G (1993) The protein import machinery of mitochondria. Protein Science 2: 141–146

    Article  PubMed  CAS  Google Scholar 

  • Schoffl F, Key JL (1982) An analysis of mRNAs for a group of heat shock proteins of soybean using cloned cDNAs. J Mol Appl Genet 1: 301–314

    PubMed  CAS  Google Scholar 

  • Schoffl F, Rossol I, Angermueller S (1987) Regulation of the transcription of heat shock genes in nuclei from soybean ( Glycine max) seedlings. Plant Cell Envir 10: 113–119

    Google Scholar 

  • Schuster G, Even D, Kloppstech K, Ohad I (1988) Evidence for protection by heatshock proteins against photoinhibition during heat-shock. EMBO J 7: 1–6

    PubMed  CAS  Google Scholar 

  • Takahashi Y, Nagata T (1992) parB: An auxin-regulated gene encoding glutathione S-transferase. Proc Natl Acad Sci USA 89: 56–59

    Google Scholar 

  • Vierling E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 42: 579–620

    Article  CAS  Google Scholar 

  • Vierling E, Mishkind ML, Schmidt GW, Key JL (1986) Specific heat shock proteins are transported into chloroplasts. Proc Natl Acad Sci USA 83: 361–365

    Article  PubMed  CAS  Google Scholar 

  • Weis E, Berry JA (1988) Plants and high temperature stress. In SP Long, FI Woodward, eds, Plants and Temperature, Symposia of the Society for Experimental Biology, Vol 42, The Company of Biologists Limited, Cambridge, pp 329–346

    Google Scholar 

  • Welch WJ (1991) The role of heat-shock proteins as molecular chaperones. Current Opinion in Cell Biol 3: 1033–1038

    Article  CAS  Google Scholar 

  • Zimmermann JL, Apuya N, Darwish K, O’Carroll C (1989) Novel regulation of heat shock genes during carrot somatic embryo development. Plant Cell 1: 37–46

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Key, J.L., Lee, YR.J., Goekjian, V., Nagao, R.T. (1994). The Low Molecular Weight Heat Shock Proteins of Soybean Seedlings. In: Cherry, J.H. (eds) Biochemical and Cellular Mechanisms of Stress Tolerance in Plants. NATO ASI Series, vol 86. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79133-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79133-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79135-2

  • Online ISBN: 978-3-642-79133-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics