Skip to main content

Regulation of Low Temperature-Induced Genes during Cold Acclimation of Arabidopsis Thaliana

  • Conference paper
Biochemical and Cellular Mechanisms of Stress Tolerance in Plants

Part of the book series: NATO ASI Series ((ASIH,volume 86))

Abstract

Arabidopsis thaliana provides an ideal model system for molecular analysis of plant cold acclimation. This small Cruciferae can readily cold acclimate and the acclimation process is accompanied by expression of a specific set of low temperature-responsive genes. Structural analysis of such Iti (low temperature induced) genes has demonstrated that many of them code for polypeptides related to members of the RAB/LEA/DHN family of water stress responsive proteins. This structural similarity is indicative of common function for these proteins and suggests overlapping responses to freezing and desiccation stress. The other Iti genes characterized seem to code for novel, often very hydrophilic proteins. Enhanced freezing tolerance of A. thaliana can be induced by exposure to low temperature, mild desiccation or exogenous abscisic acid (ABA). Mutant studies have suggested that ABA-controlled processes appear to be required for a normal acclimation response. In accordance with the observed pattern of freezing tolerance induction, expression of the lti genes is responsive to the same three stimuli. However, there are marked differences in the expression patterns of the lti genes during the different modes of induction. Furthermore, the genes seem to fall into three different categories with respect to the signal pathways employed for their expression. Existence of separate response pathways to the different stimuli appears to be the most common mechanism for induction of these genes. Accordingly, stimulus specific DNA elements appear to be present in the lti promoters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker J, Steele C, Dure L (1988) Sequence and characterization of 6 Lea proteins and their genes from cotton. Plant Mol Biol 11: 277–291

    Article  CAS  Google Scholar 

  • Bray E (1988) Drought-and ABA-induced changes in polypeptide and mRNA accumulation i tomato leaves. Plant Physiol 88: 1210–1214

    Article  PubMed  CAS  Google Scholar 

  • Cattivelli L, Bartels D (1990) Molecular cloning and characterization of cold-regulated genes in barley. Plant Physiol 93: 1504–1510

    Article  PubMed  CAS  Google Scholar 

  • Chen HH, Gavinlertvatana P, Li PH (1979) Cold acclimation of stem-cultured plants and leaf callus of solanum species. Bot Gaz 140: 142–147

    Article  Google Scholar 

  • Chen HH, Li PH, Brenner ML (1983) Involvement of abscisic acid in potato cold acclimation. Plant Physiol 71: 362–365

    Article  PubMed  CAS  Google Scholar 

  • Chen HH, Gusta LV (1983) Abscisic acid-induced freezing resistance in cultured plant cells. Plant Physiol 73: 71–75

    Article  PubMed  CAS  Google Scholar 

  • Close TJ, Kortt AA, Chandler PM (1989) A cDNA-based comparison of dehydration-induced proteins (dehydrins) in barley and corn. Plant Mol Biol 13: 95–108

    Article  PubMed  CAS  Google Scholar 

  • Cloutier Y, Siminovitch D (1982) Correlation between cold- and drought-induced frost hardiness in winter wheat and rye varieties. Plant Physiol 69: 256–258

    Article  PubMed  CAS  Google Scholar 

  • Cohen A, Bray EA (1990) Characterization of three mRNAs that accumulate in wilted tomato leaves in response to elevated levels of endogenous abscisic acid. Planta 182: 27–33

    Article  CAS  Google Scholar 

  • Dure IL, Crouch M, Harada J, Ho THD, Mundy J, Quatrano R, Thomas T, Sung ZR (1989) Common amino acid sequence domains among the LEA proteins of higher plants. Plant Mol Biol 12: 475–486

    Article  CAS  Google Scholar 

  • Dunn MA, Hughes MA, Pearce RS, Jack PL (1990) Molecular characterization of a barley gene induced by cold treatment. J Exp Bot 41: 1405–1413

    Article  CAS  Google Scholar 

  • Gilmour SJ, Hajela RK, Thomashow MF (1988) Cold acclimation in Arabidopsis thaliana. Plant Physiol 87: 745–750

    Article  PubMed  CAS  Google Scholar 

  • Gilmour SJ, Thomashow MF (1991) Cold acclimation and cold-regulated gene expression in ABA mutants of Arabidopsis thaliana. Plant Mol Biol 17: 1233–1240

    Article  PubMed  CAS  Google Scholar 

  • Gilmour SJ, Artus NN, Thomashow MF (1992) cDNA sequence analysis and expression of two coldregulated genes of Arabidopsis thaliana. Plant Mol Biol 18: 13–21

    Article  PubMed  CAS  Google Scholar 

  • Giraudat J, Hauge BM, Valon C, Smalle J, Parcy F, Goodman H (1992) Isolation of the Arabidopsis abi3 gene by positional cloning. Plant Cell 4: 1251–1261

    Article  PubMed  CAS  Google Scholar 

  • Guiltinan MJ, Marcotte WR Jr, Quatrano RS (1990) A plant leucine zipper protein that recognizes an abscisic acid response element. Science 250: 267–271

    Article  PubMed  CAS  Google Scholar 

  • Guo W, Ward RW, Thomashow MF (1992) Characterization of a cold-regulated wheat gene related to Arabidopsis cor47. Plant Physiol 100: 915–922

    Article  PubMed  CAS  Google Scholar 

  • Guy CL, Niemi KJ. Brambl R (1985) Altered gene expression during cold acclimation of spinach. Proc Nad Acad Sci USA 82: 3673–3677

    Article  CAS  Google Scholar 

  • Guy C, Haskell D, Neven L, Klein P, Smelser C (1992) Hydration-state-responsive proteins link cold and drought stress in spinach. Planta 188: 265–270

    Article  CAS  Google Scholar 

  • Hajela RK, Horvath DP, Gilmour SJ, Thomashow MF (1990) Molecular cloning and expression of cor (cold-regulated) genes in Arabidopsis thaliana. Plant Physiol 93: 1246–1252

    Article  PubMed  CAS  Google Scholar 

  • Heino P, Sandman G, Lång V, Nordin K, Palva ET (1990) Abscisid acid deficiency prevents development of freezing tolerance in Arabidopsis thaliana ( L.) Heynh. Theor Appl Genet 79: 801–806

    Article  CAS  Google Scholar 

  • Houde M, Danyluk J, Laliberfé J, Rassart E, Dhindsa RS, Sarhan F (1992) Cloning, characterization and expression of a cDNA encoding a 50-kilodalton protein specifically induced by cold acclimation in wheat. Plant Physiol 99: 1381–1387

    Article  PubMed  CAS  Google Scholar 

  • Koornneef M, Hanhart CJ, Hilhorst HWM, Karssen CM (1989) In vivo inhibition of seed development and reserve protein accumulation in recombinants of abscisic acid biosynthesis and responsiveness mutants in Arabidopsis thaliana. Plant Physiol 90: 463–469

    Article  PubMed  CAS  Google Scholar 

  • Koornneef M, Jorna ML, Brinkhorst-van der Swan DLC, Karssen CM (1982) The isolation of abscisic acid (ABA) deficient mutants by selection of induced revertants in non-germinating gibberellin sensitive lines of Arabidopsis thaliana ( L.) Heynh. Theor Appl Genet 61: 385–393

    Google Scholar 

  • Koornneef M, Reuling G, Karssen CM (1984) The isolation and characterization of abscisic acidinsensitive mutants of Arabidopsis thaliana. Physiol Plan/ 61: 377–383

    Article  CAS  Google Scholar 

  • Kurkela S, Franck M, Heino P, Lamp;ng V, Palva ET (1988) Cold induced gene expression in Arabidopsis thaliana L. Plant Cell Reports 7: 495 - 498

    CAS  Google Scholar 

  • Kurkela S, Franck M (1990) Cloning and characterization of a cold- and ABA-inducible Arabidopsis gene. Plant Mol Biol 15: 137–144

    Article  PubMed  CAS  Google Scholar 

  • Kurkela S (1991) Structure and expression analysis of an Arabidopsis thaliana gene family of two cold induced genes. PhD Thesis, University of Helsinki, Helsinki, Finland

    Google Scholar 

  • Kurkela S, Borg-Franck M (1992) Structure and expression of kin2, one of two cold- and ABA-induced genes of Arabidopsis thaliana. Plant Mol Biol 19: 689–692

    Article  PubMed  CAS  Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stresses: Vol 1. Chilling, freezing and high temperature stresses. Academic Press, New York

    Google Scholar 

  • Lin C, Guo WW, Everson E, Thomashow MF (1990) Cold acclimation in Arabidopsis and wheat: a response associated with expression of related genes encoding ‘boiling-stable’ polypeptides. Plant Physiol 94: 1078–1083

    Article  PubMed  CAS  Google Scholar 

  • Lin C, Thomashow MF (1992a) A cold-regulated Arabidopsis gene encodes a polypeptide having potent cryoprotective activity. Biochem Biophys Res Commun 183: 1103–1108

    Article  PubMed  CAS  Google Scholar 

  • Lin C, Thomashow MF (1992b) DNA sequence analysis of a complementary DNA for cold-regulated Arabidopsis gene corl5 and characterization of the COR 15 polypeptide. Plant Physiol 99: 519–525

    Article  PubMed  CAS  Google Scholar 

  • Ling V, Heino P, Palva ET (1989) Low temperature acclimation and treatment with exogenous abscisic acid induce common polypeptides in Arabidopsis thaliana ( L.) Heynh. Theor Appl Genet 77: 729–734

    Google Scholar 

  • Ling V, Palva ET (1992) The expression of a rab-related gene, rabl8, is induced by abscisid acid during the cold acclimation process of Arabidopsis thaliana ( L.) Heynh. Plant Mol Biol 20: 951–962

    Article  Google Scholar 

  • Meyerowitz EM (1989) Arabidopsis, a useful weed. Cell 56: 263–269

    Google Scholar 

  • Mohapatra SS, Poole RJ, Dhindsa RS (1987) Changes in protein patterns and translatable mRNA populations during cold acclimation of alfalfa. Plant Physiol 84: 1172–1176

    Article  PubMed  CAS  Google Scholar 

  • Mohapatra SS, Wolfraim L, Poole RJ, Dhindsa RS (1989) Molecular cloning and relationship to freezing tolerance of cold-acclimation-specific genes in alfalfa. Plant Physiol 89: 375–380

    Article  PubMed  CAS  Google Scholar 

  • Mundy J, Chua N-H (1988) Abscisic acid and water-stress induce the expression of a novel rice gene. EMBO J 7: 2279–2286

    PubMed  CAS  Google Scholar 

  • Mundy J, Yamaguchi-Shinozaki K, Chua N-H (1990) Nuclear proteins bind conserved elements in the abscisic acid-responsive promoter of a rice rab gene. Proc Natl Acad Sci USA 87: 1406–1410

    Article  PubMed  CAS  Google Scholar 

  • Neven LG, Haskell DW, Hofig A, Li Q-B, Guy CL (1993) Characterization of a spinach gene responsive to low temperature and water stress. Plant Mol Biol 21: 291–305

    Article  PubMed  CAS  Google Scholar 

  • Nordin K, Heino P, Palva ET (1991) Separate signal pathways regulate the expression of a lowtemperature-induced gene in Arabidopsis thaliana ( L.) Heynh. Plant Mol Biol 16: 1061–1071

    Article  PubMed  CAS  Google Scholar 

  • Nordin K, Lang V, Mantyla E, Heino P, Welin B, Baudo M, Holmstrom K-O, Palva ET (1993a) Role of ABA in regulation of low temperature-induced genes in Arabidopsis thaliana. In Advances in Plant Cold Hardiness, edited by P.H. Li and L. Christersson, pp. 45–56. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Nordin K, Vahala T, Palva ET (1993b) Differential expression of two related, low-temperature-induced genes in Arabidopsis thaliana ( L.) Heynh. Plant Mol Biol 21: 641–653

    Google Scholar 

  • Orr W, Keller WA, Singh J (1986) Induction of freezing tolerance in an embryogenic cell suspension culture of Brassica napus by abscisic acid at room temperature. J Plant Physiol 126: 23–32

    CAS  Google Scholar 

  • Orr W, Iu B, White TC, Robert LS, Singh J (1992) Complementary DNA sequence of a low temperature-induced Brassica napus gene with homology to the Arabidopsis thaliana kinl gene. Plant Physiol 98: 1532–1534

    Article  PubMed  CAS  Google Scholar 

  • Picket M, Scott G, Davies P, Wang N, Joshi S, Few C (1984) Sequence of antifreeze protein precursor. Eur J Biochem 143: 35–38

    Article  Google Scholar 

  • Rouse D, Gehring CA, Parish RW (1992) Structure and sequence of a dehydrin-Iike gene in Arabidopsis thaliana. Plant Mol Biol 19: 531–532

    Article  PubMed  CAS  Google Scholar 

  • Sakai A, Larcher W (1987) Frost survival of plants. Responses and adaptations to freezing stress. Springer-Verlag, Berlin

    Google Scholar 

  • Skriver K, Mundy J (1990) Gene expression in response to abscisic acid in osmotic stress. Plant Cell 2: 503–512

    Article  PubMed  CAS  Google Scholar 

  • Stebbins GL (1972) Flowering plants: Evolution above the species level. Belknap, Harvard Boston

    Google Scholar 

  • Weiser CJ (1970) Cold resistance and injury in wooded plants. Science 169, 1269–1278

    Article  PubMed  CAS  Google Scholar 

  • Weretilnyk E, Orr W, White TC, Iu B, Singh J (1993) Characterization of three related lowtemperature-regulated cDNAs from winter Brassica napus. Plant Physiol 101: 171–177

    Article  PubMed  CAS  Google Scholar 

  • Wolfram LA, Langis R, Tyson H, Dhindsa RS (1993) cDNA sequence, expression and transcript stability of a cold acclimation-specific gene, cas18, of alfalfa (Medicago falcata). Plant Physiol 101:1275–1282

    Article  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1993) Characterization of the expression of a desiccationresponsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Mol Gen Genet 236: 331–340

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Palva, E.T. et al. (1994). Regulation of Low Temperature-Induced Genes during Cold Acclimation of Arabidopsis Thaliana . In: Cherry, J.H. (eds) Biochemical and Cellular Mechanisms of Stress Tolerance in Plants. NATO ASI Series, vol 86. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79133-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79133-8_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79135-2

  • Online ISBN: 978-3-642-79133-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics