Advertisement

Responses to Salt Stress in the Halophyte Mesembryanthemum Crystallinum

  • Hans J. Bohnert
  • John C. Thomas
  • E. Jay DeRocher
  • Christine B. Michalowski
  • Heimo Breiteneder
  • Dan M. Vernon
  • Wei Deng
  • Shigehiro Yamada
  • Richard G. Jensen
Part of the NATO ASI Series book series (volume 86)

Abstract

The halophyte Mesembryanthemum crystallinum (common ice plant) has emerged as a model system suitable to advance our understanding of mechanisms that have evolved in a species adapted to harsh environments, characterized by drought and salt stress conditions. Here, we include a discussion of distinguishing factors of cellular and organismic responses to salt stress, the role of growth regulators, and a discussion of molecular and metabolic mechanisms employed by this plant for survival. Several mechanisms appear to be important, including acceleration of ontogeny, protection of the photosynthetic apparatus, the rapid induction of presumably osmoprotective substances, and the long-term establishment of Crassulacean Acid Metabolism (CAM). Our understanding of the causes for tolerance and resistance towards abiotic environmental stresses, salt stress in particular, has been extended to include the transfer of functionally characterized genes from M. crystallinum into other plants. The use of transgenic plants will be an essential component of future work directed at the molecular dissection of mechanisms of transcription control, mRNA-stability and developmental competence in establishing salt stress tolerance.

Keywords

Salt Stress Crassulacean Acid Metabolism Glycine Betaine Mesembryanthemum Crystallinum Halophyte Mesembryanthemum Crystallinum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams P, Thomas JC, Vernon DM, Bohnert HJ, Jensen RG (1992) Distinct cellular and organismic responses to salt stress. Plant Cell Physiol 33: 1215–1223Google Scholar
  2. Andolfatto P, Bornhouser A, Bohnert HJ, Thomas JC (1993) Transformed hairy-roots of Mesembryarithemum crystallinum: gene expression patterns upon salt stress. SubmittedGoogle Scholar
  3. Bartholomew DM, Bartley GE, Scolnik PA (1991) Abscisic acid control of rbcS and cab transcription in tomato leaves. Plant Physiol 96: 291–296PubMedCrossRefGoogle Scholar
  4. Binzel ML, Hess FD, Bressan RA, Hasegawa PM (1988) Intracellular compartmentation of ions in salt-adapted tobacco cells. Plant Physiol 86: 607–614PubMedCrossRefGoogle Scholar
  5. Bohnert HJ, Vernon DM, DeRocher EJ, Michalowski CB, Cushman JC (1992) Biochemistry and molecular biology of CAM. I: Wray JL (ed) Inducible plant proteins. Cambridge University Press, Cambridge, UK, pp. 113–137CrossRefGoogle Scholar
  6. Breiteneder H, Michalowski CB, Bohnert HJ (1993) Environmental stress-mediated differential 3’-end formation of chloroplast RNA-binding protein transcripts. SubmittedGoogle Scholar
  7. Bressan RA, Nelson DE, Iraki NM, LaRosa PC, Singh NK, Hasegawa PM, Carpita NC (1990) Reduced cell expansion and changes in cell walls of plant cells adapted to NaCl. In Katterman F (ed) Environmental injury to plants. Academic Press, San Diego, pp. 137–171Google Scholar
  8. Brugnoli E, Lauteri M (1991) Effects of salinity on stomatal conductance, photosynthetic capacity, and carbon isotope discrimination of salt-tolerant (Gossypium hirsutum L.) and salt-sensitive (Phaseolus vulgaris L.) C3 non-halophytes. Plant Physiol 95: 628–635PubMedCrossRefGoogle Scholar
  9. Casas AM, Bressan RA, Hasegawa PM (1991) Cell growth and water relations of the halophyte, Atriplex nummularia L., in response to NaCl. Plant Cell Rep 10: 81–84CrossRefGoogle Scholar
  10. Casas AM, Nelson DE, Ragothama KG, D’Urzo MP, Singh NK, Bressan RA, Hasegawa PM (1992) Expression of osmotin-like genes in the halophyte Atriplex nummularia L. Plant Physiol 99: 329–337PubMedCrossRefGoogle Scholar
  11. Chu C, Ziyu D, Ku MSB, Edwards GE (1990) Induction of crassulacean acid metabolism in the facultative halophyte Mesembryanthemum crystallinum. Plant Physiol 93: 1253–1260PubMedCrossRefGoogle Scholar
  12. Claes B, Dekeyser R, Villaroel R, van den Bulcke M, Bauw G, van Montagu M, Caplan A (1990) Characterization of a rice gene showing organ-specific expression in response to salt stress and drought. The Plant Cell 2: 19–27PubMedCrossRefGoogle Scholar
  13. Csonka LN (1989) Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev 53: 121–147PubMedGoogle Scholar
  14. Cushman JC (1993) Molecular cloning and expression of chloroplast NADP-malate dehydrogenase during Crassulacean acid metabolism induction by salt stress. Photosyn Res 35: 15–27CrossRefGoogle Scholar
  15. Cushman JC, Bohnert HJ (1993) Transcriptional activation of CAM-genes during development and environmental stress. In: Winter K, Smith AP, Smith JAC (eds) Crassulacean Acid Metabolism: Biochemistry, Ecophysiology and Evolution, Springer Verlag, Heidelberg, in pressGoogle Scholar
  16. Cushman JC, Michalowski CB, Bohnert HJ (1990) Developmental control of crassulacean acid metabolism inducibility by salt stress in the common ice plant. Plant Physiol 94: 1137 - 1142PubMedCrossRefGoogle Scholar
  17. Cushman JC, Meyer G, Michalowski CB, Schmitt JM, Bohnert HJ (1989) Salt stress leads to differential expression of two isogenes of PEPcarboxylase during crassulacean acid metabolism induction in the common ice plant. The Plant Cell 1: 715–725PubMedCrossRefGoogle Scholar
  18. Demmig B, Winter K (1986) Sodium, potassium, chloride and proline concentrations of chloroplasts isolated from a halophyte, Mesembryanthemum crystallinum. Planta 168: 421–426CrossRefGoogle Scholar
  19. DeRocher EJ, Harkins K, Galbraith DW, Bohnert HJ (1990) Developmentally regulated systemic endopolyploidy in succulents with small genomes. Science 250: 99–101PubMedCrossRefGoogle Scholar
  20. DeRocher EJ, Quigley F, Mache R, Bohnert HJ (1993) The six genes of the Rubisco small subunit multigene family from Mesembryanthemum crystallinum, a facultative CAM plant. Mol Gen Genet, In pressGoogle Scholar
  21. DeRocher EJ, Bohnert HJ (1993) Expression of the RbcS multigene family in Mesembryanthemum crystallinum during development and under environmental stress. SubmittedGoogle Scholar
  22. Flowers TJ, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Annu Rev Plant Physiol 28: 89–121CrossRefGoogle Scholar
  23. Fougere F, Le RD, Streeter JG (1991) Effects of salt stress on amino acids, organic acid, and carbohydrate composition of roots, bacteroids, and cytosol of alfalfa (Medicago sativa L.). Plant Physiol 96: 1228–1236PubMedCrossRefGoogle Scholar
  24. Green way H, Munns R (1980) Mechanisms of salt tolerance in non halophytes. Annu Rev Plant Physiol 31: 149–190CrossRefGoogle Scholar
  25. Hanson AD, Rathinasabapathi B, Chamberlin B, Gage DA (1991) Comparative physiological evidence that beta-alanine betaine and choline-O-sulfate act as compatible osmolytes in halophytic Limonium species. Plant Physiol 97: 1199–1205PubMedCrossRefGoogle Scholar
  26. Hasegawa PM, Bressan RA, Handa AK (1986) Cellular mechanisms of salinity tolerance. Hort Sci 21: 1317–1323Google Scholar
  27. Holthe PA, Sternberg L, Ting IP (1987) Developmental control of CAM in Perperomia scandens. Plant Physiol 84: 640–642CrossRefGoogle Scholar
  28. Kononowicz AK, Hasegawa PM, Bressan RA (1992) Cell cycle duration in tobacco cells adapted to NaCl. Environ Exp Bot 32: 1–9CrossRefGoogle Scholar
  29. Koster S, Anderson JA (1989) The photosynthetic apparatus of C3 and CAM-induced Mesembryanthemum crystallinum. Photosyn Res 19: 251–264Google Scholar
  30. Loescher WH (1987) Physiology and metabolism of sugar alcohols in higher plants. Plant Physiol 70: 553–557CrossRefGoogle Scholar
  31. Martin B, Nienhuis J, King G, Schaefer A (1989) Restriction fragment length polymorphisms associated with water use efficiency in tomato. Science 243: 1725–1728PubMedCrossRefGoogle Scholar
  32. McCue K, Hanson A (1990) Drought and salt tolerance: towards understanding and application. TIBTech 8: 358–362Google Scholar
  33. Meiners M, Thomas JC, Bohnert HJ, Cushman JC (1991) Regeneration of multiple shoots and plants from Mesembryanthemum crystallinum. Plant Cell Rep 9: 563–566CrossRefGoogle Scholar
  34. Meyer G, Schmitt JM, Bohnert HJ (1990) Direct screening of a small genome: estimation of the magnitude of plant gene expression changes during adaptation to high salt. Mol Gen Genet 224: 347–356PubMedCrossRefGoogle Scholar
  35. Michalowski CB, Olson SW, Piepenbrock M, Schmitt JM, Bohnert HJ (1989) Time course of mRNA induction elicited by salt stress in the common ice plant. Plant Physiol 89: 811–816PubMedCrossRefGoogle Scholar
  36. Michalowski CB, DeRocher EJ, Bohnert HJ, Salvucci ME (1992) Phosphoribulokinase from ice plant: transcription, transcripts and protein expression during environmental stress. Photosyn Res 31: 127–138CrossRefGoogle Scholar
  37. Ostrem JA, Olson SW, Schmitt JM, Bohnert HJ (1987) Salt stress increases the level of translatable mRNA for PEPcarboxylase in M. crystallinum. Plant Physiol 84: 1270–1275PubMedCrossRefGoogle Scholar
  38. Paul MJ, Cockburn W (1989) Pinitol, a compatible solute in Mesembryanthemum crystallinum L? J Exp Bot 40: 1093–1098CrossRefGoogle Scholar
  39. Rhodes D (1987) Metabolic responses to stress. In: Stumpf P, Conn E (eds) Biochemistry of plants, vol 12, Academic Press, New York, pp. 201–241Google Scholar
  40. Saleki R, Young PG, Lefebvre DD (1993) Mutants of Arabidopsis thaliana capable of germination under saline conditions. Plant Physiol 101: 839–845PubMedGoogle Scholar
  41. Schobert B (1977) Is there an osmotic regulatory mechanism in algae and higher plants? J Theor Biol 68, 17–26PubMedCrossRefGoogle Scholar
  42. Schwarz M, Lerner HR, Reinhold L (1991) Mitochondria isolated from NaCl-adapted tobacco cell lines (N. tabacum/ gossii) maintain their phosphorylative capacity in highly saline media. Plant Physiol 96: 69–76PubMedCrossRefGoogle Scholar
  43. Singh NK, Nelson DE, Kuhn D, Hasegawa PM, Bressan RA (1989) Molecular cloning of osmotin and regulation of its expression by ABA and adaptation to low water potentials. Plant Physiol 90: 1096–1101PubMedCrossRefGoogle Scholar
  44. Skriver K, Mundy J (1990) Gene expression in response to abscisic acid and osmotic stress. Plant Cell 2: 503–512PubMedCrossRefGoogle Scholar
  45. Smirnoff N, Cumber QJ (1989) Hydroxyl-radical scavenging activity of compatible solutes. Phytochem 28: 1057–1060CrossRefGoogle Scholar
  46. Tarczynski MC, Jensen RG, Bohnert HJ (1992) Expression of a bacterial mtlD gene in transgenic tobacco leads to production and accumulation of mannitol. Proc Natl Acad Sci USA 89: 2600–2604PubMedCrossRefGoogle Scholar
  47. Tarczynski MC, Jensen RG, Bohnert HJ (1993) Stress protection in transgenic tobacco producing a putative osmoprotectant, mannitol. Science 259: 508–510PubMedCrossRefGoogle Scholar
  48. Thomas JC, deArmond R, Bohnert HJ (1992a) Influence of NaCl on growth, proline, and phosphoenolpyruvate carboxylase levels in Mesembryanthemum crystallinum suspension cultures. Plant Physiol 98: 626–631PubMedCrossRefGoogle Scholar
  49. Thomas JC, McElwain EF, Bohnert HJ (1992b) Convergent induction of osmotic stress responses. Abscisic acid, cytokinin and the effects of NaCl. Plant Physiol 100: 416–423PubMedCrossRefGoogle Scholar
  50. Thomas CJ, Bohnert HJ (1993) Linking salt stress perception and plant growth regulators in the halophyte, Mesembryanthemum crystallinum. SubmittedGoogle Scholar
  51. Treichel S (1975) The effect of NaCl on the concentration of proline in different halophytes. Z Pflanzenphysiol 76: 56–68Google Scholar
  52. Vernon DM, Bohnert HJ (1992a) A novel methyl transferase induced by osmotic stress in the facultative halophyte Mesembryanthemum crystallinum. EMBO J 11: 2077–2085PubMedGoogle Scholar
  53. Vernon DM, Bohnert HJ (1992b) Increased expression of a myo-inositol methyl transferase in Mesembryanthemum crystallinum is part of a stress response distinct from crassulacean acid metabolism induction. Plant Physiol 99: 1695–1698PubMedCrossRefGoogle Scholar
  54. Vernon DM, Ostrem J A, Bohnert HJ (1993) Stress perception and response in a facultative halophyte: the regulation of salinity-induced genes in Mesembryanthemum crystallinum. Plant Cell Environ 16: In pressGoogle Scholar
  55. Vernon DM, Tarczynski MC, Jensen RG, Bohnert HJ (1993) Cyclitol production in transgenic tobacco. Plant J 4: in pressGoogle Scholar
  56. Waterborg JH, Harrington RE, Winicov I (1989) Differential histone acetylation in alfalfa (Medicago sativa) due to growth in NaCl: responses in salt-stressed and salt-tolerant callus cultures. Plant Physiol 90: 237–245PubMedCrossRefGoogle Scholar
  57. Winter K, Gademann R (1991) Daily changes in CO2 and water vapor exchange, chlorophyll fluorescence, and leaf water relations in the facultative halophyte Mesembryanthemum crystallinum during the induction of crassulacean acid metabolism in response to high NaCl salinity. Plant Physiol 95: 768–776PubMedCrossRefGoogle Scholar
  58. Wyn Jones RG, Gorham J (1983) Osmoregulation. In: Encyclopedia of Plant Physiology, New Series, vol 12C, Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Springer Verlag, Berlin, pp. 35–58Google Scholar
  59. Yancey PH, Clark ME, Hand SC, Bowlus RD, Romero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217: 1214–1222PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Hans J. Bohnert
    • 1
  • John C. Thomas
    • 1
  • E. Jay DeRocher
    • 1
    • 2
  • Christine B. Michalowski
    • 1
  • Heimo Breiteneder
    • 1
    • 3
  • Dan M. Vernon
    • 1
    • 4
  • Wei Deng
    • 1
  • Shigehiro Yamada
    • 1
  • Richard G. Jensen
    • 1
  1. 1.Departments of Biochemistry, Molecular and Cellular Biology, and Plant SciencesThe University of ArizonaTucsonUSA
  2. 2.DOE-Plant Research LaboratoryMSUEast LansingUSA
  3. 3.Institut for General and Experimental PathologyUniversity of ViennaViennaAustria
  4. 4.Department of BotanyOklahoma State UniversityStillwaterUSA

Personalised recommendations