Skip to main content

A Role for Sorbitol in Desiccation Tolerance of Developing Maize Kernels: Inference from the Properties of Maize Sorbitol Dehydrogenase

  • Conference paper
Biochemical and Cellular Mechanisms of Stress Tolerance in Plants

Part of the book series: NATO ASI Series ((ASIH,volume 86))

Abstract

Some tissues of most higher plant species are capable of tolerating extremes of desiccation. Typically, these tissues are found within the developing seed (Kermode et al., 1986), but for some species a wider range of tissues may be desiccation tolerant (Bartels, this volume). Within the developing seed the ability to tolerate desiccation is typically acquired during seed development, and is typically lost upon germination (Bartels et al., 1991; Kermode et al., 1986). Thus, the developing seed provides a system which can be utilized to elucidate at the biochemical and molecular level those factors which are involved in the acquisition and loss of desiccation tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmad I, Lahrer F, Stewart GR (1979) Sorbitol, a compatible osmotic solute in Plantagomaritima. New Phytol. 82: 671–678.

    Article  CAS  Google Scholar 

  • Angleton EL, Van Wart HE (1988) Preparation by direct metal exchange and kinetic study of active site metal substituted class I and class II Clostridium histolyticum collagenases. Biochem. 27: 7413–7418.

    Article  CAS  Google Scholar 

  • Aronson BD, Somerville RL, Epperly BR, Dekker EE (1989) The primary structure of Escherichia coli L-threonine dehydrogenase. J.Biol.Chem. 264: 5226–5232.

    PubMed  CAS  Google Scholar 

  • Auld DS, Holmquist B (1974) Carboxypeptidase A differences in the mechanisms of ester and peptide hydrolysis. Biochem. 13: 4355–4361.

    Article  CAS  Google Scholar 

  • Bartels D, Engelhardt K, Roncarati R, Schneider K, Rotter M, Salamini F (1991) An ABA and GA modulated gene expressed in the barley embryo encodes an aldose reductase related protein. EMBO J. 10: 1037–1043.

    PubMed  CAS  Google Scholar 

  • Bayliss ME, Prescott JM (1986) Modified activity of Aeromonas aminopeptidase: metal ion substitutions and role of substrates. Biochem. 25: 8113–8117.

    Article  CAS  Google Scholar 

  • Beck E, Hopf H (1990) Branched-chain sugars and sugar alcohols. In PM Dey, JB Harborne, eds. Methods in Plant Biochemistry, Vol. 2, Academic Press, Inc., New York, pp 235–289

    Google Scholar 

  • Ito, H., Fukuda, Y., Murata, K., Kimura, A. (1983) Transformation of intact yeast cells with alkali cations. J. Bacteriol. 153, 163–168.

    PubMed  CAS  Google Scholar 

  • Borras T, Persson B, Jornvall H (1989) Eye lens z-crystallin relationships to the family of “longchain” alcohol/polyol dehydrogenases. Protein trimming and conservation of stable parts. Biochemistry 28: 6133–6139.

    Article  PubMed  CAS  Google Scholar 

  • Briens M, Larher F (1982) Osmoregulation in halophytic higher plants: a comparative study of soluble carbohydrates, polyols, betaines and free proline. Plant,Cell and Environment 5: 287–292.

    CAS  Google Scholar 

  • Briens M, Larher F (1983) Sorbitol accumulation in plantaginaceae: further evidence for a function in stress tolerance. Z.Pflanzenphysiol. 110: 447–458.

    CAS  Google Scholar 

  • Brown AD, Edgley M (1980) Osmoregulation in yeast. In DW Rains, C Valentine, A Hollaender, eds. Genetic Engineering of Osmoregulation, Plenum, New York, pp 75

    Google Scholar 

  • Carey EE, Rhodes AM, Dickinson DB (1982) Postharvest levels of sugars and sorbitol in sugary enhancer (su se) and sugary (su Se) maize. HortSci. 17: 241–242.

    CAS  Google Scholar 

  • Chitlaru E, Pick U (1991) Regulation of glycerol synthesis in response to osmotic changes in Dunaliella. Plant Physiol. 96: 50–60.

    Article  PubMed  CAS  Google Scholar 

  • Cowley BD,Jr., Ferraris JD, Carper D, Burg MB (1990) In vivo osmoregulation of aldose reductase mRNA, protein, and sorbitol in renal medulla. Amer.J.Physiol. 258: F154–F161.

    Google Scholar 

  • Crowe JH, Crowe LM, Chapman D (1984) Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science 223: 701–703.

    Article  PubMed  CAS  Google Scholar 

  • Davies RC, Riordan JF, Auld DS, Vallee BL (1968) Kinetics of carboxypeptidase A. I. Hydrolysis of carbobenzoxyglycyl-L-phenylalanine, Benzoylglycyl-L-phenylalanine, and hippuryl-DL-B-phenyllactic acid by metal-substituted and acetylated carboxypeptidases. Biochem. 7: 1090–1099.

    Article  CAS  Google Scholar 

  • Doehlert DC (1987) Ketose reductase activity in developing maize endosperm. Plant Physiol. 84: 830–834.

    Article  PubMed  CAS  Google Scholar 

  • Doehlert DC (1990a) Distribution of enzyme activities within the developing maize (Zea mays) kernel in relation to starch, oil and protein accumulation. Physiol. PI ant. 78: 560–567.

    Article  CAS  Google Scholar 

  • Doehlert DC (1990b) Fructokinases from developing maize kernels differ in their specificity for nucleoside triphosphates. Plant Physiol. 93: 353–355.

    Article  PubMed  CAS  Google Scholar 

  • Doehlert DC, Kuo TM, Felker FC (1988) Enzymes of sucrose and hexose metabolism in developing kernels of two inbreds of maize. Plant Physiol. 86: 1013–1019.

    Article  PubMed  CAS  Google Scholar 

  • Eklund H, Horjales E, Jornvall H, Branden CI, Jeffery J (1985) Molecular aspects of functional differences between alcohol and sorbitol dehydrogenases. Biochem. 24: 8005–8012.

    Article  CAS  Google Scholar 

  • Epperly BR, Dekker EE (1991) L-Threonine dehydrogenase from Escherichia coli: Identification of an active site cysteine residue and metal ion studies. J.Biol.Chem. 266: 6086–6092.

    PubMed  CAS  Google Scholar 

  • Feiters MC, Jeffery J (1989) Zinc environment in sheep liver sorbitol dehydrogenase. Biochem. 28: 7257–7262.

    Article  CAS  Google Scholar 

  • Flora LL, Madore MA (1993) Stachyose and mannitol transport in olive ( Olea europaea L ). Planta 189: 484–490.

    Article  CAS  Google Scholar 

  • Ford CW (1984) Accumulation of low molecular weight solutes in water-stressed tropical legumes. Phytochem. 23: 1007–1015.

    Article  CAS  Google Scholar 

  • Grant CR, Ap Rees T (1981) Sorbitol metabolism by apple seedlings. Phytochem. 20: 1505–1511.

    Article  CAS  Google Scholar 

  • Hellebust JA (1985) Mechanisms of response to salinity in halotolerant microalgae. P1. & Soil 89: 69–81.

    Article  Google Scholar 

  • Hirai M (1981) Purification and characteristics of sorbitol 6-phosphate dehydrogenase from loquat leaves. Plant Physiol. 67: 221–224.

    Article  PubMed  CAS  Google Scholar 

  • Hirai M (1983) Seasonal changes in sorbitol-6-phosphate dehydrogenase in loquat leaf. Plant & Cell Physiol. 24: 925–931.

    CAS  Google Scholar 

  • Jeffery J, Chesters J, Mills C, Sadler PJ, Jornvall H (1984) Sorbitol dehydrogenase is a zinc enzyme. EMBO J. 3: 357–360.

    PubMed  CAS  Google Scholar 

  • Jeffery J, Jornvall H (1983) Enzyme relationships in a sorbitol pathway that bypasses glycolysis and pentose phosphates in glucose metabolism. Proc.Nat.Acad.Sci.(USA) 80: 901–905.

    Article  CAS  Google Scholar 

  • Jeffery J, Jornvall H (1988) Sorbitol dehydrogenase. Adv.Enzymol.Relat. Areas Mol.Biol. 61: 47–106.

    PubMed  CAS  Google Scholar 

  • Jornvall H, Bahr-Lindstrom V, Jeffery J (1984) Extensive variations and basic features in the alcohol dehydrogenase - sorbitol dehydrogenase family. Eur.J.Biochem. 140: 17–23.

    Article  PubMed  CAS  Google Scholar 

  • Jornvall H, Persson B, Jeffery J (1987) Characteristics of alcohol/polyol dehydrogenases. The zinccontaining long-chain alcohol dehydrogenases. Eur.J.Biochem. 167: 195–201.

    Article  PubMed  CAS  Google Scholar 

  • Karlsson C, Maret W, Auld DS, Hoog JO, Jornvall H (1989) Variability within mammalian sorbitol dehydrogenases. The primary structure of the human liver enzyme. Eur.J.Biochem. 186: 543–550.

    Article  PubMed  CAS  Google Scholar 

  • Kermode AR, Bewley JD, Dasgupta J, Misra S (1986) The transition from seed development to germination: A Key role for desiccation. HortSci. 21: 1113–1118.

    CAS  Google Scholar 

  • Khalifah RG, Rogers JI, Mukherjee J (1987) Interaction of the unique competitive inhibitor imidazole and related compounds with the active site metal of carbonic anhydrase: linkage between pH effects on the inhibitor binding affinity and pH effects on the visible spectra of inhibitor complexes with the cobalt-substituted enzyme. Biochem. 26: 7057–7063.

    Article  CAS  Google Scholar 

  • Lewis DH (1984) Physiology and metabolism of alditols. In DH Lewis, ed. Storage Carbohydrates in Vascular Plants, Cambridge Univ. Press, Cambridge, pp 157–179

    Google Scholar 

  • Loescher WH (1987) Physiology and metabolism of sugar alcohols in higher plants. Physiol.Plant. 70: 553–557.

    Article  CAS  Google Scholar 

  • Loescher WH, Tyson RH, Everard JD (1992) Mannitol synthesis in higher plants. Evidence for the role and characterization of a NADPH-dependent mannose 6-phosphate reductase. Plant Physiol. 98: 1396–1402.

    Article  PubMed  CAS  Google Scholar 

  • Loewus FA (1990) Cyclitols. In PM Dey, JB Harborne, eds. Methods in Plant Biochemistry, Vol. 2, Academic Press, Inc., New York, pp 219–233

    Google Scholar 

  • Maret W, Auld DS (1988) Purification and characterization of human liver sorbitol dehydrogenase. Biochem. 27: 1622–1628.

    Article  CAS  Google Scholar 

  • Maret W, Makinen MW (1991) The pH variation of steady-state kinetic parameters of site- specific Co2+-reconstituted liver alcohol dehydrogenase. A mechanistic probe for the assignment of metal-linked ionizations. J.Biol.Chem. 266: 20636–20644.

    PubMed  CAS  Google Scholar 

  • Moriguchi T, Sanada T, Yamaki S (1990) Seasonal fluctuations of some enzymes relating to sucrose and sorbitol metabolism in peach fruit. Journal of the American Society for Horticultural Science 115: 278–281.

    CAS  Google Scholar 

  • Muench KH (1971) Fractionation of transfer RNA on columns of hydroxyl apatite. Proc. in Nucleic Acid Res. 2: 515–523.

    Google Scholar 

  • Negm FB, Loescher WH (1979) Detection and characterization of sorbitol dehydrogenase from apple callus tissue. Plant Physiol. 64: 69–73.

    Article  PubMed  CAS  Google Scholar 

  • Negm FB, Loescher WH (1981) Characterization and partial purification of Aldose-6-phosphate Reductase (Alditol-6-phosphate:NADP 1-Oxidoreductase) from apple leaves. Plant Physiol. 67: 139–142.

    Article  PubMed  CAS  Google Scholar 

  • Ng K, Ye RQ, Wu XC, Wong SL (1992) Sorbitol dehydrogenase from Bacillus subtilis — purification, characterization, and gene cloning. J.Biol.Chem. 267: 24989–24994.

    PubMed  CAS  Google Scholar 

  • Nguyen A, Lamant A (1988) Pinitol and myo-inositol accumulation in water-stressed seedlings of maritime pine. Phytochem. 27: 3423–3427.

    Article  CAS  Google Scholar 

  • Nishimura C, Wistow G, Carper D (1989) Rat lens aldose reductase: Characterization of its primary structure, mRNA, and gene complexity. In H Weiner, TG Flynn, eds. Enzymology and Molecular Biology of Carbonyl Metabolism 2, Alan R. Liss, Inc., New York, pp 211–220

    Google Scholar 

  • Paleg LG, Aspinall D (1981) Proline accumulation: physiological aspects. In LG Paleg, D Aspinall, eds. Physiology and Biochemistry of Drought Resistance, Academic Press, Inc., Sidney, pp 105–143

    Google Scholar 

  • Paul MJ, Cockburn W (1989) Pinitol, a compatible solute in Mesembryanthemum crystallinum L. J.Exp.Bot. 40: 1093–1098.

    Article  CAS  Google Scholar 

  • Redgwell RJ, Bieleski RL (1978) Sorbitol 1-phosphate and sorbitol 6-phosphate in apricot leaves. Phytochem. 17: 407–409.

    Article  CAS  Google Scholar 

  • Shaw JR, Dickinson DB (1984) Studies of sugars and sorbitol in developing corn kernels. Plant Physiol. 75: 207–211.

    Article  PubMed  CAS  Google Scholar 

  • Streeter JG (1985) Identification and distribution of ononitol in nodules of Pisum sativum and Glycine max. Phytochem. 24: 174–176.

    Article  CAS  Google Scholar 

  • Tarczynski MC, Jensen RC, Bohnert HJ (1992) Expression of a bacterial mtlD gene in transgenic tobacco leads to production and accumulation of mannitol. Proc.Nat.Acad.Sci.(USA) 89: 2600–2604.

    Article  CAS  Google Scholar 

  • Tarczynski MC, Jensen RG, Bohnert HJ (1993) Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science 259: 508–510.

    Article  PubMed  CAS  Google Scholar 

  • Walsall EP, Lyons SA, Metzer RP (1978) A Comparison of selected physical properties of hepatic sorbitol dehydrogenases [L-Iditol:Nad Oxidoreductases] from four mammalian species. Comp.Biochem.Physiol. 59B: 213–218.

    Article  CAS  Google Scholar 

  • Yamaki S (1982) Localization of sorbitol oxidase in vacuoles and other subcellular organelles in apple cotyledons. Plant and Cell Physiol. 23: 891–899.

    CAS  Google Scholar 

  • Yamaki S (1984) NADP-dependent sorbitol dehydrogenase found in apple leaves. Plant and Cell Physiol. 25: 1323–1327.

    CAS  Google Scholar 

  • Yamaki S, Moriguchi T (1989) Seasonal fluctuation of sorbitol-related enzyme/s and invertase activities accompanying maturation of Japanese pear (Pyrus serotina Rehder var. culta Rehder) fruit. Journal of the Japanese Society for Horticultural Science 57: 602–607.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Locy, R.D. (1994). A Role for Sorbitol in Desiccation Tolerance of Developing Maize Kernels: Inference from the Properties of Maize Sorbitol Dehydrogenase. In: Cherry, J.H. (eds) Biochemical and Cellular Mechanisms of Stress Tolerance in Plants. NATO ASI Series, vol 86. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79133-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79133-8_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79135-2

  • Online ISBN: 978-3-642-79133-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics