Skip to main content

S-Nitrosothiols and the Bioregulatory Actions of Nitrogen Oxides Through Reactions with Thiol Groups

  • Chapter
The Role of Nitric Oxide in Physiology and Pathophysiology

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 196))

Abstract

Chemists have long been aware of the red color that develops upon treatment of thiols with nitrous acid. Shortly after the turn of the last century, Tasker and Jones (1909) reported on the synthesis of benzene thionitrite, which exhibits a red color. The authors further noted that the compound was highly unstable and rapidly decomposed to (biphenyl) disulfide and nitric oxide (NO) gas. Thermal and photolytic decomposition of thionitrites was later shown to involve homolytic fission, as inferred from these early experiments (Lecher and Siefken 1926; Rao et al. 1967; Josephy et al. 1984). Tasker and Jones (1909) also described the thionitrite (or S-nitrosothiol; RS-NO) formed from ethane-thiol treatment with nitrosyl chloride (NOCI). This compound was shown to be significantly more stable than the corresponding benzene thiol derivative, but also disappeared with evolution of nitric oxide. Thus, the well documented importance of the electron withdrawing effect of the thiyl (RS) group in hastening the homolytic decomposition of RS-NO had been appreciated well over 50 years ago. In 1969, Mirna and Hofman provided additional insight into the physical properties of biological RS-NOs. These studies demonstrated the trend for greater stability of thionitrites at low pH. At the same time, differences in the stability of thionitrites derived from cysteine and glutathione were noted. While S nitroso-cysteine rapidly decomposes through homolytic fission, the S-nitroso adduct of glutathione remains stable over a wide (physiological) pH range (Mirna and Hofmann 1969). Shortly thereafter, Field and colleagues, isolated the highly stable thionitrite derivative of N-acetylpenicillamine (Field et al. 1978). More importantly, this work also demonstrated that disappearance of RS-NO can follow heterolytic pathways, specifically, reactions in which IRS-NO formally transfers NO+ (or NO). Additional reactions, persumed to be heterolytic in mechanism, were subsequently reported by Massey and colleagues (1978) and Oae and coworkers (1978) and supported the growing use of thionitrites in organic synthesis as effective nitrosating agents. The notable stability of protein thionitrites has been appreciated most recently, and heterolytic fission of the S-N bond appears to predominate in many biological systems (Stamler et al. 1992a,b,c; Lipton et al. 1993; Stamler 1994).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Kaabi SS, Williams DLH, Bonnet R, Ooi S (1982) A kinetic investigation of the thionitrite from (±)-2acetylamino-2-carboxy-1,1-dimethylethanethiol as a possible nitrosating agent. J Chem Soc Perkins IL 227–230

    Google Scholar 

  • Aldred SE, Williams LH (1982) Kinetics and mechanisms of the nitrosation of alcohols, carbohydrates, and a thiol. J Chem Soc Perkin Trans II: 777–782

    Google Scholar 

  • Beckman JS, Beckman TW, Chen J, Marshell PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc nati Acad Sci USA 87: 1620–1624

    Article  CAS  Google Scholar 

  • Bolotina VM, Najibi S, palacio JJ, Pagano PJ, Cohen RA (1994) Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature 368: 850–853

    Article  PubMed  CAS  Google Scholar 

  • Bonnett R, Holleyhead R, Johnson BI, Randall EW (1975) Reactions of acidified nitrite solutions with peptide derivatives: evidence for nitrosamine and thionitrite formation from 15N N.M.R. studies. J Chem Soc Perkin I: 2261–2264

    Article  Google Scholar 

  • Butler AR, Askew SC (1993) The vascular action of S-nitroglutathione: evidence for NO transfer. Endothelium 1: 144A

    Google Scholar 

  • Byler DM, Gosser DK, Susi H (1983) Spectroscopic estimation of the extent of S-nitrosothiol formation by nitrite action on sulfhydryl groups. J Agric Food Chem 31: 523–527

    Article  CAS  Google Scholar 

  • Castellani AG, Niven CF (1985) Factors affecting the bacteriostatic action of sodium nitrite. Appl Microbiol 3: 154–159

    Google Scholar 

  • Clancy RM, Piziak-Leszcynska J, Abramson SB (1993) Nitric oxide stimulates ADP-ribosylation of action in human neutrophils. Biochem Biophys Res Commun 191: 847–852

    Article  PubMed  CAS  Google Scholar 

  • Clancy RM, Yegudin J, Levartovsky D, Piziak-Leszcynska J, Abramson SB (1994) Nitric oxide reacts with intracellular glutathione and activates the hexose monophosphate shunt in human neutrophils: evidence for S-nitrosoglutathione as a bioactive intermediary. Pro Natl Acad Sci USA 91: 3680–3684

    Article  CAS  Google Scholar 

  • Chong S, Fung HI (1990) Thiol-mediated catalysis of nitroglycerin degradation by serum proteins. Drug Metab Dispos 18: 61–67

    PubMed  CAS  Google Scholar 

  • Chong S, Fung H (1991) Biochemical and pharmacological interactions between nitroglycerin and thiols. Biochem Pharmacol 42: 1433–1439

    Article  PubMed  CAS  Google Scholar 

  • Cook JP, Stamler JS, Andon N, Davies PF, McKinley G, Loscalzo J (1990) Flow Stimulation endothelial cells to release a nitrosovasodilator that is potentiated by reduced thiol. Am J Physiol 28: H804 — H812

    Google Scholar 

  • Dimmler S, Brune B (1992) Characterization of a nitric oxide catalysed ADP ribosylation of glyceraldehyde-3-phosphate dehydrogenase. Eur J Biochem 1202: 305–310

    Article  Google Scholar 

  • Feelisch M (1991) The biochemical pathways of nitric oxide formation from nitrosovasodilators; Appropriate choice of exogenous NO donors and aspects of preparation and handling of aqueous NO solutions. J Cardiovasc Pharmacol 17 Suppl 3: S25 — S33

    Article  Google Scholar 

  • Feelisch M, Noack E (1987) Nitric oxide formation from nitrovasodilators occurs independently of hemoglobin or non-heme iron. Eur J Pharmacol 142: 465–469

    Article  PubMed  CAS  Google Scholar 

  • Field L. Dilts RV, Ravichandran R, Lenhert PG, Carnahan GE (1978) An unusually stable thionitrite from N-acetyl-D, L-penicillamine; X-ray crystal and molecular structure of 2-(acetylamino)-2-carboxy-1, 1dimethylethyl thionitrite. J Chem Soc Chem Comm: 249–250

    Google Scholar 

  • Fung HL, Chong S, Kowaluk E, Hough K, Kakemi M (1988) Mechanisms for the pharmacologic interaction of organic nitrates with thiols. Existence of an extracellular pathway for the reversal of nitrate vascular tolerance by N-acetylcysteine. J Pharmacol Exp Ther 245: 524–530

    PubMed  CAS  Google Scholar 

  • Chong S, Fung H (1991) Biochemical and pharmacological interactions between nitroglycerin and thiols. Biochem Pharmacol 42: 1433–1439

    Article  PubMed  CAS  Google Scholar 

  • Gaston B, Drazen JM, Loscalzo J, Stamler JS (1994a) The biology of nitrogen oxides in the airways. State-of-the-Art. Am Rev Respir Dis 149: 538–551

    CAS  Google Scholar 

  • Gaston B, Drazen JM, Jansen A, Sugarbaker DJ, Loscalzo J, Richards W, Stamler JS (1994b) Relaxation of human bronchial smooth muscle by S-nitrosothiols in vitro. J Pharmacol Exp Ther 268: 978–984

    PubMed  CAS  Google Scholar 

  • Gruetter CA, Gruetter DY, Lyon JE, Kadowitz PJ, Ignarro LJ (1981) Relationship between cyclic guanosine 3’:5’-monophosphate formation and relaxation of coronary arterial smooth muscle by glycerol trinitrate, nitroprusside, nitrite and nitric oxide: effects of methylene blue and methemoglobin. J Pharmacol Exp Ther 219: 181–186

    PubMed  CAS  Google Scholar 

  • Han J, Stamler JS, Griffith O (1994) Inhibition of y-glutamylcysteine synthetase by nitirc oxide donors. FASEB J 8: Al288

    Google Scholar 

  • Hibbs JB (1991) Overview of cytotoxic mechanisms and defense of the intracellular environment against microbes. The biology of Nitric oxide II. Portland, Chapel Hills, pp 201–206

    Google Scholar 

  • Incze K, Parkes J, Mihalyi V, Zukal E (1974) Antibacterial effect of cysteine-nitrosothiol and possible precursors thereof. Appl Microbiol 27: 202–205

    PubMed  CAS  Google Scholar 

  • Ignarro LJ (1989) Biological actions and properties of endothelium-derived nitric oxide formed and released from artery and vein. Circ Res 65: 1–21

    PubMed  CAS  Google Scholar 

  • Ignarro L, Gruetter CA (1980) Requirement of thiols for activation of coronary arterial guanylate cyclase by glycerol trinitrate and sodium nitrite. Biochim Biophys Acta 631: 221–231

    PubMed  CAS  Google Scholar 

  • Ignarro LJ, Edwards JC, Gruetter DY, Barry BK, Gruetter CA (1980) Possible involvement of S-nitrosothiols in the activation of guanylate cyclase by nitroso compounds. FEBS Lett 110: 275–278

    Article  PubMed  CAS  Google Scholar 

  • Iganarro LJ, Lippton H, Edwards JC, Bancos WH, Hyman AL, Kadowitz PH, Gruetter CA (1981) Mechanism of vascular smooth muscle relaxation by organic nitrates, nitrites, nitroprusside and nitric oxide: Evidence for the involvement of S-nitrosothiols as active intermediates. J Pharmacol Exp Ther 218: 739–749

    Google Scholar 

  • Jansen A, Drazen J, Osborne JA, Brown R, Loscalzo J, Stamler JS (1992) The relaxant properties in guinea pig airways of S-nitrosothiols. J Pharmacol Exp Ther 261: 154–160

    PubMed  CAS  Google Scholar 

  • Jocelyn PC (1972) In: Biochemistry of the SH group. Academic, London

    Google Scholar 

  • Johnson MA, Loynes R (1971) Inhibition of Clostridium botulinum by sodium nitrite in a bacteriologic medium and in meat. Can Inst Food Technol J 4: 179–184

    Google Scholar 

  • Josephy PD, Rehorek D, Janzen EG (1984) Electron spin resonance spin trapping of thiyl radicals from the decomposition of thionitrites.Tetrahedron Lett 25: 1685–1688

    Article  CAS  Google Scholar 

  • Kamisaki Y, Waldman SA, Murad F (1986) The involvement of catalytic site thiol groups in the activation of soluble guanylate cyclase by sodium nitroprusside. Arch Biochem Biophys 251: 709–714

    Article  PubMed  CAS  Google Scholar 

  • Kanner J (1979) S-nitrosocysteine (RSNO), and effective antioxidant in cured meat. J Am Oil Chem Soc 56: 74–76

    Article  CAS  Google Scholar 

  • Keaney JF, Simon DI, Stamler JS, Jaraki 0, Scharfstein J, Vita JA, Loscalzo J (1993) NO forms an adduct with serum albumin that has endothelium-derived relaxing factro-like properties. J Clin Invest 91: 1582–1589

    Article  PubMed  CAS  Google Scholar 

  • Kerr SW, Buchanan LV, Bunting S, Mathews WR (1992) Evidence that S-nitrosothiols are responsible for the smooth muscle relaxing activity of the bovine retractor penis inhibitory factor. J Pharmacol Exp Ther 263: 285–263

    PubMed  CAS  Google Scholar 

  • Kowaluk EA, Fung HL (1990) Spontaneous liberation of nitric oxide cannot account for in vitro vascular relaxation by S-nitrosothiols. J Pharmacol Exp Ther 255: 1256–1264

    PubMed  CAS  Google Scholar 

  • Lecher H, Siefken W (1926) Nitrosyl-derivate des zweiwertigen Schwefels, I: Das Nitrosylethylmercaptid. Ber Dtsch Chem Ges 59B: 1314–1326

    CAS  Google Scholar 

  • Lei SZ, Pan ZH, Aggarwal SK, Chen HSV, Hartman J, Sucher NJ, Lipton SA (1992) Effect of nitric oxide production on the redox modulatory site of the NMDA receptor-channel complex. Neuron 8: 1087–1099

    Article  PubMed  CAS  Google Scholar 

  • Lipton SA, Choi YB, Pan ZH, Lei SZ, Vincent Chen HS, Sucher NJ, Loscalzo J, Singel DJ, Stamler JS (1993) A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364: 626–632

    Article  PubMed  CAS  Google Scholar 

  • Loscalzo J (1985) N-acetylcysteine potentiates inhibition of platelet aggregation by nitroglycerin. J Clin Invest 76: 703–708

    Article  PubMed  CAS  Google Scholar 

  • Manzoni O, Prezeau L, Marin P, Deshager S, Bockaert J, Fagni L (1992) Nitric oxide-induced blockade of NMDA receptors. Neuron 8: 653–662

    Article  PubMed  CAS  Google Scholar 

  • Mason J (1969) Trithioromethyl thionitrite. J Chem Soc A 1587–1592

    Google Scholar 

  • Massey RC, Crews C, Davies R, McWeeny DJ (1978) A study of the competitive nitrosations of pyrrolidine, ascorbic acid, cysteine and p-Cresol in a protein-based model system. J Sci Food Agric 29: 815–821

    Article  CAS  Google Scholar 

  • McNainly J, Williams DLH (1993) Fate of nitric oxide from the decomposition of S-nitrosothiols. Endothelium 1: 141A

    Google Scholar 

  • Mima A, Hofmann K (1969) Uber den verbleib von Nitrit in fleischwaren. 1. Umsetzung von Nitrit mit sulhydryl verbindungen. Fleischwirtschaft 10: 1361–1364

    Google Scholar 

  • Molina Y Vedia L, Mcdonald B, Reep B, Brune B, DiSilvio M, BilliarTR, Lapentina EG (1992) Nitric-oxideinduced S-nitrosylation of glyceraldehyde-3-phosphate dehydrogenase inhibits enzymatic activity and increases endogenous ADP ribosylation. J Biol Chem. 267: 24929–24932

    Google Scholar 

  • Mohr S, Stamler JS, Brune B (1994) Mechanism of covalent modification of glyceraldehyde-3phosphate dehydrogenase at its active site thiol by nitric oxide, peroxynitrite and related nitrosating agents. FEBS Letters 348: 223–227

    Article  PubMed  CAS  Google Scholar 

  • Morris SL, Hansen JN (1981) Inhibition of Bacillus cereus spore outgrowth by covalent modifications of a sulfhydryl group by nitrosothiol and iodoacetate. J Bacteriol 148: 465–471

    PubMed  CAS  Google Scholar 

  • Morris SL, Walsh RC, Hansen JN (1984) Identification and characterization of some bacterial membrane sulfhydryl groups which are targets of bacteriostatic and antibiotic action. J Biol Chem 259: 13590–13594

    PubMed  CAS  Google Scholar 

  • Myers PR, Minor RL, Guerra R, Bates JN, Harrison DG (1990) Vasorelaxant properties of the endothelium-derived relaxing factor more closely resemble S-nitrosocysteine than nitric oxide. Nature 345: 161–163

    Article  PubMed  CAS  Google Scholar 

  • Niroomand F, Rossle R, Mulsch A, Bohme A (1989) Under anaerobic conditions, soluble guanylate cyclase is specifically stimulated by glutathione. Biochem Biophys Res Commun 161: 75–80.

    Article  PubMed  CAS  Google Scholar 

  • Oae S, Shinhama K (1983) Organic thionitrites and related substances. In: Organic preparations and procedures. Organic Prep Proced 15: 165–198

    Article  CAS  Google Scholar 

  • Oae S, Fukushima D, Kim YH (1977) Novel method of activating thiols by their conversion into thionitries with dinitrogen tetroxide. J Chem Soc Chem Comm: 407–408

    Google Scholar 

  • Oae S, Kim YH, Fukushima D, Shinhama K (1978) New syntheses of thionitrites and their chemical reactivities. J Chem Soc Perkin 1: 913–917

    Article  Google Scholar 

  • O’Leary V, Solberg M (1976) Effect of sodium nitrite on inhibition of intracellular thiol groups and on the activity of certain glycolytic enzymes in Clostridium porringers. Appl Environ Microbiol 31: 208–212

    PubMed  Google Scholar 

  • Park JW (1988) Reaction of 5-nitrosoglutathione with sulfhydryl groups in protein. Biochem Biophys Res Commun 152: 916–920

    Article  PubMed  CAS  Google Scholar 

  • Pryor WA, Church DF, Govinden CK, Crank G (1982) Oxidation of thiols by nitric oxide and nitrogen dioxide: synthetic utility and toxicological implications. J Org Chem 47: 156–159.

    Article  CAS  Google Scholar 

  • Radomski MW, Rees DD, Durta A, Moncada S (1993) S-nitroso-glutathione inhibits platelet activation in vitro and in vivo. Br J Pharmacol, 107: 745–749

    Google Scholar 

  • Ramdev P, Loscalzo J, Feelisch M, Stamler JS (1993) Biochemical properties and bioactivity of a physiologic NO reservoir. Circulation 88: 1–522

    Google Scholar 

  • Rao PM, Copeck JA, Knight AR (1967) Reactions of thiyl radicals II. The photolysis of methyl disulfide vapor. Can J Chem 45: 1369–1374

    Article  CAS  Google Scholar 

  • Ribeiro JM, Hazzard JMH, Nussenzveig RH, Champagne DE, Walker FA (1993) Reversible binding of nitric oxide by a salivary heure protein from a bloodsucking insect. Science 260: 539–541

    Article  PubMed  CAS  Google Scholar 

  • Ridd J (1978) Diffusion control and pre-association in nitrosation, nitration and halogenation. Adv Phys Organ Chem 16: 1–49

    Article  CAS  Google Scholar 

  • Rinden E, Maricq MM, Grabowski JJ (1989) Gas-phase ion-molecule reactions of the nitric oxide anion. J Am Chem Soc II: 1203–1210

    Article  Google Scholar 

  • Rockett KA, Auburn MM, Lowden WB, Clark IA (1991) Killing of Plasmodium falciparum in vivo by nitric oxide derivatives. Infect Immun 59: 3280–3283

    PubMed  CAS  Google Scholar 

  • Schafer JE, Lee F, Thomson S, Han BJ, Cooke JR, Loscalzo J (1991) The hemodynamic effects of S-nitrosocaptopril in anesthetized dogs. J Pharmacol Exp Ther 256: 704–709

    Google Scholar 

  • Scharfstein JS, Keaney J, Stamler JS, Vita J, Loscalzo (1993a) Low molecular weight thiols transfer nitric oxide from an endogenous plasma reservoir to vascular smooth muscle. Clin Res 41: 232A

    Google Scholar 

  • Scharfstein JS, Slivka A, Stamler JS, Loscalzo J (1993b) In vivo transfer of nitric oxide from a plasma reservoir to cysteine. Circulation 88: 1–523

    Google Scholar 

  • Simon DI, Stamler JS, Jaraki O, Keaney J, Osborne JA, Francis SA, Singel DJ, Loscalzo J (1993) Antiplatelet properties of protein S-nitrosothiols derived from nitric oxide and endothelium-derived relaxing factor. Arterioscler Thromb 13: 791–799

    Article  PubMed  CAS  Google Scholar 

  • Simon DI, Stamler JS, Jaraki O, Keaney J, Osborne JA, Francis SA, Singel DJ, Loscalzo J (1993) Antiplatelet properties of protein S-nitrosothiols derived from nitric oxide and endothelium-derived relaxing factor. Arterioscler Thromb 13: 791–799

    Article  PubMed  CAS  Google Scholar 

  • Snyder SH (1993) Janus faces of nitric oxide. Nature 364: 577

    Article  PubMed  CAS  Google Scholar 

  • Stamler JS, Loscalzo J (1991) The antithrombotic effects of organic nitrates. Trends Cardiovasc Med 1: 346–353

    Article  PubMed  CAS  Google Scholar 

  • Stamler JS (1994) Redox Signaling: Nitrosylation and related target interactions of nitric oxide. Cell 78: 931–936

    Article  PubMed  CAS  Google Scholar 

  • Stamler JS, Loscalzo J (1992) Capillary electrophoretic detection of thiols and their 5-nitrosated derivatives. Anal Chem 64: 779–785

    Article  PubMed  CAS  Google Scholar 

  • Stamler JS, Cunningham M, Loscalzo J (1988) Reduced thiols and the effect of nitroglycerin on platelet function. Am J Cardiol 62: 377–380

    Article  PubMed  CAS  Google Scholar 

  • Stamler JS, Mendelsohn M, Amarante P, Davies PF, Cooke JP, Loscalzo J (1989) N-acetylcysteine potentiates platelet inhibition by endothelium derived relaxing factor. Circ Res 65: 789–795

    PubMed  CAS  Google Scholar 

  • Stamler JS, Simon DI, Osborne JA, Mullins ME, Jaraki O, Michel T, Singel DJ, Loscalzo J (1992a) 5-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc Natl Acad Sci USA 89: 444–448

    Article  PubMed  CAS  Google Scholar 

  • Stamler JS, Jaraki 0, Osborne J, Simon DI, Keaney J, Vita J, Singel D, Valeria RC (1992b) Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin. Proc Natl Acad Sci USA 89: 7674–7677

    Article  PubMed  CAS  Google Scholar 

  • Stamler JS, Singel D, Loscalzo J (1992c) Biochemistry of nitric oxide and its redox activated forms. Science 258: 1898–1902

    Article  PubMed  CAS  Google Scholar 

  • Stamler JS, Simon DI, Jaraki O, Osborne JA, Francis J, Mullins M, Singel D, Loscalzo (1992d) Snitrosylation of tissue-type plasminogen activator confers vasodilatory and antiplatelet properties on the enzyme. Proc Natl Acad Sci USA 89: 8087–8091

    CAS  Google Scholar 

  • Stamler JS, Simon DI, Osborne JA, Mullins M, Jaraki 0, Michel T, Singel D, Loscalzo J (1992e) Exposure of sulfhydryl containing proteins to nitric oxide and endothelium-derived relaxing factor confers novel bioactivity and modulates their intrinsic functional properties. In: Moncada S, Marietta MA, Higgs A, Hibbs JB (eds) Biology of nitric oxide I. Portland Chapel Hill, pp 20–23

    Google Scholar 

  • Stamler JS, Osborne JA, Jaraki O, Rabbani LE, Mullins M, Singel D, Loscalzo J (1993) Adverse effects of homocysteine are modulated by endothelium-derived relaxing factor and related oxides of nitrogen. J Clin Invest 1: 308–318

    Article  Google Scholar 

  • Starkebaum G, Harlan JM (1986) Endothelial cell injury due to copper-catalyzed hydrogen peroxide generation from homocysteine. J Clin Invest 77: 1370–1376

    Article  PubMed  CAS  Google Scholar 

  • Tasker HS, Jones HQ (1909) The action of mercaptans on acid chlorides, part II. The acid chlorides of phosphorous, sulfur and nitrogen. J Chem Soc 95: 1910

    CAS  Google Scholar 

  • Turk T, Hollocher TC (1992) Oxidation of dithiothreitol during turnover of nitric oxide reductase: evidence for generation of nitroxyl with the enzyme from paracoccus denitrificans. Biochem Biophys Res Commun 183: 983–988

    Article  PubMed  CAS  Google Scholar 

  • Williams DHL (1988) Nitrosation. Cambridge University Press, Cambridge

    Google Scholar 

  • Wink DA, Kasprzak KS, Maragos CM, Elespuru RK, Misra M, Dunams TM, Cebula TA, Koch WH, Andrews AW, Allen S, Keefer LK (1991) DNA deaminating ability and genotoxicity of nitric oxide and its progenitors. Science 254: 1001–1003

    Article  PubMed  CAS  Google Scholar 

  • Wink DA, Darbyshire JF, Nims RW, Saavedra JE, Ford PC (1993) Reactions of bioregulatory agent nitric oxide in oxygenated aqueous media: determination of the kinetics of oxidation and nitrosation by intermediates generated in the NO/O2 reaction. Chem Res Toxicol 6: 23–27

    Article  PubMed  CAS  Google Scholar 

  • World Health Organization (1977) Environmental health criteria 4 oxides of nitrogen. World Health Organization, Geneva

    Google Scholar 

  • Wu M, Kaminski PM, Fayngersh RP, Groszek LL, Pritchard KA, Hintze TH, Stemerman MB, Wolin MS (1994) Involvement of nitric oxide and nitrosothiols in relaxation of pulmonary arteries to peroxynitrite. Am J Physiol 266: H2108 — H2113

    PubMed  CAS  Google Scholar 

  • Yeates RA, Laufen H, Leitold M (1985) The reaction between organic nitrates and sulfhydryl compounds: a possible model system for the activation of organic nitrates. Mol Pharmacol 28: 555–559

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stamler, J.S. (1995). S-Nitrosothiols and the Bioregulatory Actions of Nitrogen Oxides Through Reactions with Thiol Groups. In: Koprowski, H., Maeda, H. (eds) The Role of Nitric Oxide in Physiology and Pathophysiology. Current Topics in Microbiology and Immunology, vol 196. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79130-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79130-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79132-1

  • Online ISBN: 978-3-642-79130-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics