Advertisement

Recoupling of Homo- and Heteronuclear Dipolar Interactions in Rotating Solids

  • Andrew E. Bennett
  • Robert G. Griffin
  • Shimon Vega
Part of the NMR Basic Principles and Progress book series (NMR, volume 33)

Abstract

The measurement of homo- and heteronuclear dipolar couplings by nuclear magnetic resonance (NMR) techniques is an important tool for the determination of molecular structure in solids. In a static polycrystalline solid, the dipolar coupling between two magnetically dilute spins results in the characteristic “Pake pattern” [1], first observed in the 1H spectrum of gypsum, CaSo4-2H2O, which arises from the interaction between the two protons in the water molecules of hydration. The splitting between the singularities provides a straightforward measurement of the dipolar coupling constant and therefore the internuclear distance between the two spins. Unfortunately, in the more general case, the structural information revealed by internuclear distances cannot be obtained directly from the static 1H NMR spectrum because of the multiplicity of couplings. In situations involving other nuclei, such as 13C, 15N, and 31P, large chemical shift anisotropics, as well as other line-broadening mechanisms, obscure the lineshape perturbations from the through-space dipolar couplings.

Keywords

Dipolar Coupling Rotational Resonance Magic Angle Spin Chemical Shift Anisotropy Spin Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pake GE (1948) J Chem Phys 16:327CrossRefGoogle Scholar
  2. 2.
    Hester RK, Ackerman JL, Neff BL, Waugh JS (1976) Phys Rev L 36:1081CrossRefGoogle Scholar
  3. 3.
    Stoll ME, Vega AJ, Vaughan RW (1976) J Chem Phys 65:4093CrossRefGoogle Scholar
  4. 4.
    Linder M, Höhener A, Ernst RR (1980) J Chem Phys 73:4959CrossRefGoogle Scholar
  5. 5.
    Munowitz MG, Huang TH, Dobson CM, Griffin RG (1984) J Magn Res 57:56Google Scholar
  6. 6.
    Herzog B, Hahn EL (1956) Phys Rev 103:148CrossRefGoogle Scholar
  7. 7.
    Kaplan DE, Hahn EL (1958) J Phys Radium 19:821CrossRefGoogle Scholar
  8. 8.
    Kaplan DE, Hahn EL (1957) Bull Am Phys Soc 2:384Google Scholar
  9. 9.
    Emshwiller M, Hahn EL, Kaplan DE (1960) Phys Rev 118:414CrossRefGoogle Scholar
  10. 10.
    Slichter CP (1990) Principles of magnetic resonance. Springer, Berlin Heidelberg New YorkGoogle Scholar
  11. 11.
    Shore SE, Amsermet J-P, Slichter CP, Sinfelt JH (1987) Phys Rev L 58:953CrossRefGoogle Scholar
  12. 12.
    Yannoni CS, Kenderick RD (1981) J Chem Phys 74:747CrossRefGoogle Scholar
  13. 13.
    Engelsberg M, Yannoni CS (1990) J Magn Res 88:393Google Scholar
  14. 14.
    Lizak MJ, Gullion T, Conradi MS (1991) J Magn Res 91:254Google Scholar
  15. 15.
    Gullion T, Schaefer J (1989) J Magn Res 81:196Google Scholar
  16. 16.
    Gullion T, Schaefer J (1989) Adv Mag Res 13:58Google Scholar
  17. 17.
    Andrew ER, Bradbury A, Eades RG (1958) Nature (London) 182:1659CrossRefGoogle Scholar
  18. 18.
    Lowe IJ (1959) Phys Rev L 2:285CrossRefGoogle Scholar
  19. 19.
    Schaefer J, Stejskal EO (1976) J Am Chem S 98:1030Google Scholar
  20. 20.
    Lippmaa E, Alia M, Tuherm T (1976) In: Brunner, H Hausser, RH, Schweitzer, D (eds) Proc. XIX Congress Ampere. Heidelberg, Group Ampere, p 113Google Scholar
  21. 21.
    Andrew ER, Hinshaw WS, Tiffen RS (1974) J Magn Res 15:191Google Scholar
  22. 22.
    Maricq M, Waugh JS (1979) J Chem Phys 70:3300CrossRefGoogle Scholar
  23. 23.
    Pines A, Gibby MG, Waugh JS (1973) J Chem Phys 59:569CrossRefGoogle Scholar
  24. 24.
    Munowitz MG, Griffin RG (1982) J Chem Phys 76:2848CrossRefGoogle Scholar
  25. 25.
    Munowitz MG, Griffin RG (1983) J Chem Phys 78:613CrossRefGoogle Scholar
  26. 26.
    Schaefer J, McKay RA, Stejskal EO, Dixon WT (1983) J Magn Res 52:123Google Scholar
  27. 27.
    Kolbert AC, Raleigh DP, Levitt MH, Griffin RG (1989) J Chem Phys 90:679CrossRefGoogle Scholar
  28. 28.
    There is, however, at least one exception. Maricq and Waugh discussed the case of a linear array of homonuclear spins undergoing MAS [22]. In this system, rotational echoes are formed because the complete dipolar Hamiltonian is self-commuting under the modulation.Google Scholar
  29. 29.
    Haeberlen U, Waugh JS (1968) Phys Rev 175:453CrossRefGoogle Scholar
  30. 30.
    Haeberlen U (1976) High resolution NMR in solids: Selective averaging. Academic, New YorkGoogle Scholar
  31. 31.
    Shirley JM (1965) Phys Rev B 138:979CrossRefGoogle Scholar
  32. 32.
    Dion DR, Hirschfelder JO (1976) Adv Chem Phys 35:265CrossRefGoogle Scholar
  33. 33.
    Zur Y, Levitt MH, Vega S (1983) J Chem Phys 78:5293CrossRefGoogle Scholar
  34. 34.
    Zax DB, Goelman G, Abramovich D, Vega S (1990) Adv Magn Res 14:219Google Scholar
  35. 35.
    Oas TG, Griffin RG, Levitt MH (1988) J Chem Phys 89:692CrossRefGoogle Scholar
  36. 36.
    Levitt MH, Oas TG, Griffin RG (1988) Isr J Chem 28:271Google Scholar
  37. 37.
    Schmidt A, Vega S (1992) Isr J Chem 32:215Google Scholar
  38. 38.
    Diverdi JA, Opella SJ (1982) J Am Chem S 104:1761CrossRefGoogle Scholar
  39. 39.
    Pan Y, Gullion T, Schaefer J (1990) J Magn Res 90:330Google Scholar
  40. 40.
    Raleigh DP, Levitt MH, Griffin RG (1988) Chem Phys L 146:71CrossRefGoogle Scholar
  41. 41.
    Levitt MH, Raleigh DP, Creuzet F, Griffin RG (1990) J Chem Phys 92:6347CrossRefGoogle Scholar
  42. 42.
    Columbo MG, Meier BH, Ernst RR (1988) Chem P Lett 146:189CrossRefGoogle Scholar
  43. 43.
    Kubo A, McDowell CA (1988) J Chem Soc Faraday Trans 84:3713CrossRefGoogle Scholar
  44. 44.
    Maas WEJR, Veeman WS (1988) J Chem Phys L 149:170CrossRefGoogle Scholar
  45. 45.
    Tycko R, Dabbagh G (1990) Chem Phys L 173:461CrossRefGoogle Scholar
  46. 46.
    Tycko R, Smith SO (1992) J Chem Phys 98:932CrossRefGoogle Scholar
  47. 47.
    Gullion T, Vega S (1992) Chem Phys L 194:423CrossRefGoogle Scholar
  48. 48.
    Bennett AE, Ok JH, Griffin RG, Vega S (1992) J Chem Phys 96:8624CrossRefGoogle Scholar
  49. 49.
    Mehring M (1976) Principles of High Resolution NMR in Solids. Springer-Verlag, Berlin, GermanyGoogle Scholar
  50. 50.
    Mehring M, Pines A, Rhim W-K, Waugh JS (1971) J Chem Phys 54:3239CrossRefGoogle Scholar
  51. 51.
    Olejniczak ET, Vega S, Griffin RG (1984) J Chem Phys 81:4804CrossRefGoogle Scholar
  52. 52.
    Wokaun A, Ernst RR (1977) J Chem Phys 67:1752CrossRefGoogle Scholar
  53. 53.
    Vega S (1978) J Chem Phys 68:5518CrossRefGoogle Scholar
  54. 54.
    Sakurai J J, Tuan SF (1985) Modern quantum mechanics. Benjamin/Cummings, Menlo Park, CaliforniaGoogle Scholar
  55. 55.
    Stejskal EO, Schaefer J, McKay RA (1977) J Magn Res 25:569Google Scholar
  56. 56.
    Maricq M, Waugh JS (1977) Chem Phys L 47:327CrossRefGoogle Scholar
  57. 57.
    Waugh JS, Maricq MM, Cantor R (1978) J Magn Res 29:183Google Scholar
  58. 58.
    Herzfeld J, Berger AE (1980) J Chem Phys 73:6021CrossRefGoogle Scholar
  59. 59.
    Schmidt A, Vega S (1992) J Chem Phys 96:2655CrossRefGoogle Scholar
  60. 60.
    Munowitz MG (1982) Ph.D. Thesis, Harvard University, Cambridge, MassachusettsGoogle Scholar
  61. 61.
    Levitt MH (1989) J Magn Res 82:427Google Scholar
  62. 62.
    Smith SO, Griffin RG (1988) Ann Rev Phys Chem 39:511CrossRefGoogle Scholar
  63. 63.
    Herzfeld J, Roufosse A, Haberkorn RA, Griffin RG, Glimcher MJ (1980) Philos Trans R Soc (London) B 289:459CrossRefGoogle Scholar
  64. 64.
    Vega S, Olejniczak ET, Griffin RG (1984) J Chem Phys 80:4832CrossRefGoogle Scholar
  65. 65.
    Kubo A, McDowell CA (1990) J Chem Phys 92:7156CrossRefGoogle Scholar
  66. 66.
    Nakai T, McDowell CA (1992) J Chem Phys 96:3452CrossRefGoogle Scholar
  67. 67.
    Weintraub O, Vega S (1994) J Magn Res 105:245Google Scholar
  68. 68.
    Maricq MM (1990) Adv Magn Res 14:151Google Scholar
  69. 69.
    Maricq MM (1982) Phys Rev B 25:6622CrossRefGoogle Scholar
  70. 70.
    Llor A (1992) Chem Phys L 199:383CrossRefGoogle Scholar
  71. 71.
    Caravatti P, Bodenhausen G, Ernst RR (1983) J Magn Res 55:88Google Scholar
  72. 72.
    Waugh JS (1982) J Magn Res 50:30Google Scholar
  73. 73.
    Magnus W (1954) Comm Pure Math 7:649CrossRefGoogle Scholar
  74. 74.
    Pechukas P, Light JC (1966) J Chem Phys 44:3897CrossRefGoogle Scholar
  75. 75.
    Evans WAB (1968) Ann Phys 48:72CrossRefGoogle Scholar
  76. 76.
    Shirley MJ (1963) Ph.D. Thesis, California Institute of Technology, Pasadena, CaliforniaGoogle Scholar
  77. 77.
    Munowitz MG, Griffin RG, Bodenhausen G, Huang T (1981) J Am Chem S 103:2529CrossRefGoogle Scholar
  78. 78.
    Miura H, Terao T, Saika A (1986) J Chem Phys 85:2458CrossRefGoogle Scholar
  79. 79.
    Raleigh DP, Olejniczak ET, Griffin RG (1988) J Chem Phys 89:1333CrossRefGoogle Scholar
  80. 80.
    Kolbert AC, Levitt MH, Griffin RG (1989) J Magn Res 85:42Google Scholar
  81. 81.
    Kolbert AC, Raleigh DP, Griffin RG (1989) J Magn Res 82:483Google Scholar
  82. 82.
    Munowitz MG, Griffin RG, Bodenhausen G, Huang TH (1982) J Am Chem S 103:2529CrossRefGoogle Scholar
  83. 83.
    Roberts JE, Harbison GS, Munowitz MG, Herzfeld J, Griffin RG, (1987) J Am Chem S 109:4163CrossRefGoogle Scholar
  84. 84.
    Anderson PW, Freeman R (1962) J Chem Phys 37:85CrossRefGoogle Scholar
  85. 85.
    Munowitz WG, Aue WP, Griffin RG (1982) J.Chem Phys 77:1686CrossRefGoogle Scholar
  86. 86.
    Sehaefer J, Stejskal EO, McKay RA, Dixon WT (1984) Macromolec 17:1479CrossRefGoogle Scholar
  87. 87.
    Webb GG, Zilm KW (1989) J Am Chem S 111:2455CrossRefGoogle Scholar
  88. 88.
    Waugh JS, Huber LM, Haeberlen U (1968) Phys Rev L 20:180CrossRefGoogle Scholar
  89. 89.
    Mansfield P (1991) J Phys C 4:1444CrossRefGoogle Scholar
  90. 90.
    Rhim WK, Elleman DD, Vaughan RW (1973) J Chem Phys 59:3740CrossRefGoogle Scholar
  91. 91.
    Lee M, Goldberg WI, (1965) Phys Rev A 140:1261Google Scholar
  92. 92.
    Burum DP, Rhim W-K (1979) J Chem Phys 71:944CrossRefGoogle Scholar
  93. 93.
    Burum DP, Linder M, Ernst RR (1981) J Magn Res 44:173Google Scholar
  94. 94.
    Gullion T, Policks MD, Sehaefer J (1988) J Magn Res 80:553Google Scholar
  95. 95.
    Bork V, Gullion T, Hing A, Sehaefer J (1989) J Magn Res 88:523Google Scholar
  96. 96.
    Sehaefer J, Stejskal EO, McKay RA, Dixon WT (1984) J Magn Res 57:85Google Scholar
  97. 97.
    Sehaefer J, Sefcik MD, Stejskal EO, McKay RA, Dixon WT, Cais RE (1984) Macromolec 17:1107CrossRefGoogle Scholar
  98. 98.
    Sehaefer J, Stejskal EO, Perchak DS, Skolnick J, Yaris R (1985) Macromolec 18:368CrossRefGoogle Scholar
  99. 99.
    Garbow JR, Jacob GS, Stejskal EO, Sehaefer J (1989) Biochem 28:1362CrossRefGoogle Scholar
  100. 100.
    Christensen AM, Sehaefer J (1993) Biochem 32:2868CrossRefGoogle Scholar
  101. 101.
    Gullion T, Conradi MS (1990) J Magn Res 86:39Google Scholar
  102. 102.
    Pan Y, Sehaefer J (1990) J Magn Res 90:341Google Scholar
  103. 103.
    Gullion T, Baker DB, Conradi MS (1990) J Magn Res 89:479Google Scholar
  104. 104.
    Gullion T, Sehaefer J (1991) J Magn Res 92:439Google Scholar
  105. 105.
    Garbow JR, Gullion T (1991) J Magn Res 95:442Google Scholar
  106. 106.
    Garbow JR, Gullion T (1992) Chem Phys L 192:71CrossRefGoogle Scholar
  107. 107.
    Marshall GR, Beusen DD, Kociolek K, Redlinski AS, Leplawy MT, Pan Y, Sehaefer J (1990) J Am ChemS 112:963CrossRefGoogle Scholar
  108. 108.
    Christensen AM, Sehaefer J, Kramer KJ, Morgan TD, Hopkins TL (1991) J Am Chem S 113:6799CrossRefGoogle Scholar
  109. 109.
    Garbow JR, McWherter CA (1993) J Am Chem S 115:238CrossRefGoogle Scholar
  110. 110.
    Holl SM, Marshall GR, Beusen DD, Kociolek K, Redlinski AS, Leplawy MT, McKay RA, Vega S, Sehaefer J (1992) J Am Chem S 114:4830CrossRefGoogle Scholar
  111. 111.
    Schmidt A, McKay RA, Sehaefer J (1992) J Magn Res 96:644Google Scholar
  112. 112.
    Holl SM, McKay RA, Gullion T, Sehaefer J (1990 J Magan Reson 89:620Google Scholar
  113. 113.
    Morris J, Freeman R (1979) J Am Chem S 101:760CrossRefGoogle Scholar
  114. 114.
    Hing A, Vega S, Sehaefer J (1992) J Magn Res 96:205Google Scholar
  115. 115.
    Hing A, Vega S, Sehaefer J (1993) J Magn Res A 103:151CrossRefGoogle Scholar
  116. 116.
    Fyfe CA, Meuller KT, Gondey H, Wong-Moon KC (1992) Chem Phys L 199:198CrossRefGoogle Scholar
  117. 117.
    Andrew ER, Clough S, Farnell LF, Gledhill TA, Roberts I (1966) Phys Lett 21:505CrossRefGoogle Scholar
  118. 118.
    Raleigh DP, Harbison SG, Neiss TG, Roberts JE, Griffin RG (1987) Chem Phys L 138:285CrossRefGoogle Scholar
  119. 119.
    Meier BH, Earl WL (1987) J Am Chem S 109:7937CrossRefGoogle Scholar
  120. 120.
    Portis AM (1953) Phys Rev 91:1071CrossRefGoogle Scholar
  121. 121.
    Andrew ER, Bradbury A, Eades RG, Wynn VT (1963) Phys Lett 4:99CrossRefGoogle Scholar
  122. 122.
    Gan ZH, Grant DM (1989) Mol Phys 67:1419CrossRefGoogle Scholar
  123. 123.
    Challoner R, Nakai T, McDowell CA (1991) J Chem Phys 94:7038CrossRefGoogle Scholar
  124. 124.
    Challoner R, Nakai T, McDowell CA (1991) Chem Phys L 180:13CrossRefGoogle Scholar
  125. 125.
    Challoner R, Nakai T, McDowell CA (1991) J Magn Res 94:433Google Scholar
  126. 126.
    Nakai T, Challoner R, McDowell CA (1991) Chem Phys L 180:13CrossRefGoogle Scholar
  127. 127.
    Nakai T, McDowell CA (1992) Mol Phys 77:569CrossRefGoogle Scholar
  128. 128.
    Kubo A, Root A, McDowell CA (1990) J Chem Phys 93:5462CrossRefGoogle Scholar
  129. 129.
    Bodenhausen G, Freeman R, Morris GA (1976) J Magn Res 23:171Google Scholar
  130. 130.
    Raleigh DP, Creuzet F, Das Gupta SK, Levitt MH, Griffin RG (1989) J Am Chem S 111:4502CrossRefGoogle Scholar
  131. 131.
    Nielsen NC, Creuzet F, Griffin RG (1993) J Magn Res A 103:245CrossRefGoogle Scholar
  132. 132.
    Nielsen NC, Creuzet F, Griffin RG, Levitt MH (1992) J Chem Phys 96:5668CrossRefGoogle Scholar
  133. 133.
    Spencer RGS, Halverson KJ, Auger M, McDermott AE, Griffin RG, Lansbury PT (1991) Biochem 30:10382CrossRefGoogle Scholar
  134. 134.
    Thompson LK, McDermott AE, Raap J, van der Wielen CM, Lugtenburg J, Herzfeld J, Griffin RG (1992) Biochem 31:7931CrossRefGoogle Scholar
  135. 135.
    Peerson OB, Yoshimura S, Hojo H, Aimoto S, Smith SO (1992) J Am Chem S 114:4332CrossRefGoogle Scholar
  136. 136.
    Creuzet F, McDermott AE, Gebhard R, van der Hoef K, Spyker-Assink MB, Herzfeld J, Lugtenberg J, Levitt MH, Griffin RG (1991) Science 257:783CrossRefGoogle Scholar
  137. 137.
    Lakshmi KV, Auger M, Raap J, Lugtenburg J, Griffin RG, Herzfeld J (1993) J Am Chem S 115:8515CrossRefGoogle Scholar
  138. 138.
    McDermott AE, Creuzet F, Griffin RG, Zawadzke L, Ye QZ, Walsh CT (1990) Biochem 29:5767CrossRefGoogle Scholar
  139. 139.
    Tycko R (1988) Phys Rev L 60:2734CrossRefGoogle Scholar
  140. 140.
    Zax DB, Bielecki A, Zilm KW, Pines A, Weitekamp DP (1985) J Chem Phys 83:4877CrossRefGoogle Scholar
  141. 141.
    Fujiwara T, Ramamoorthy A, Nagayama K, Hoika K, Fujito T (1993) Chem Phys L 212:81CrossRefGoogle Scholar
  142. 142.
    Ramamoorthy A, Fujiwara T, Nagayama K (1993) J Magn Res A 104:366CrossRefGoogle Scholar
  143. 143.
    Rhim W-K, Pines A, Waugh JS (1971) Phys Rev B 3:684CrossRefGoogle Scholar
  144. 144.
    Sodickson DK, Levitt MH, Vega S, Griffin RG (1993) J Chem Phys 98:6742CrossRefGoogle Scholar
  145. 145.
    Ok JH, Spencer RGS, Bennett AE, Griffin RG (1992) Chem Phys L 197:389CrossRefGoogle Scholar
  146. 146.
    Khorana HG (1988) J Bio Chem 263:7439Google Scholar
  147. 147.
    Henderson R, Baldwin JM, Ceska TA, Zemlin F, Beckmann E, Downing KH (1990) J Mol Bio 213:899CrossRefGoogle Scholar
  148. 148.
    Harbison GS, Smith SO, Pardoen JA, Mulder PPJ, Lugtenburg J, Herzfeld J, Mathies RA, Griffin RG (1984) Proc Natl Acad Sci USA 81:1706CrossRefGoogle Scholar
  149. 149.
    Farrar MR, Lakshmi KV, Smith SO, Brown RS, Raap J, Lugtenburg J, Griffin RG, Herzfeld J (1993) Biophys J 65:310CrossRefGoogle Scholar
  150. 150.
    Jeener J, Meier BH, Bachmann P, Ernst RR (1979) J Chem Phys 71:4546CrossRefGoogle Scholar
  151. 151.
    Ernst RR, Bodenhausen G, Wokaun A (1987) Principles of nuclear magnetic resonance in one and two dimensions. Clarendon, Oxford, EnglandGoogle Scholar
  152. 152.
    Wiithrich K (1986) NMR of proteins and nucleic acids. John Wiley, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Andrew E. Bennett
    • 1
  • Robert G. Griffin
    • 1
  • Shimon Vega
    • 2
  1. 1.Francis Bitter National Magnet Laboratory and Department of ChemistryMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of Chemical PhysicsWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations