Advertisement

Near Dipole-Dipole Effects in Nonlinear and Quantum Optics with Applications to Piezophotonic Switching

  • C. M. Bowden
  • J. P. Dowling
  • A. S. Manka
  • M. Fleischhauer
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 77)

Abstract

We summarize a new field-theoretical derivation of the near dipole-dipole or local field correction for dynamic electromagnetic fields interacting with a nonlinear medium. We present some of our recent results on a coherently-prepared collection of three-level atoms in a lasing without inversion scheme. In this system, we find local-field enchanced inversionless gain and absorptionless index, as well as a pressure sensitive or piezophotonic switching effect

Keywords

Local Field Local Field Correction Density Matrix Equation Local Field Effect Intrinsic Optical Bistability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. D. Jackson, Classical Electrodynamics, 2nd Ed. (Wiley, New York, 1975), Chap. 4.MATHGoogle Scholar
  2. 2.
    C. M. Bowden and J. P. Dowling, Phys. Rev. A 47, 1247 (1993)CrossRefADSGoogle Scholar
  3. 2a.
    C. M. Bowden and J. P. Dowling, Phys. Rev. A (erratum) 49, 1514 (1994).CrossRefADSGoogle Scholar
  4. 3.
    A. S. Manka, J. P. Dowling, C. M. Bowden, and M. Fleischhauer, “Piezophotonic Switching Due to Local Field Effects in a Coherently Prepared Medium of Three-Level Atoms,” submitted for publication.Google Scholar
  5. 4.
    K. J. Boiler, A. Imamoglu, S. E. Harris, Phys. Rev. Lett. 66, 2593 (1991)CrossRefADSGoogle Scholar
  6. 4a.
    J. E. Field, K. H. Hahn, and S. E. Harris, Phys. Rev. Lett. 67, 3062 (1991).CrossRefADSGoogle Scholar
  7. 5.
    O. A. Kocharovskaya and Ya. I. Khanin, Zh. Eksp. Teor. Fiz. 90, 1610 (1986) [Sov. Phys. JETP 63, 945 (1986)]ADSGoogle Scholar
  8. 5a.
    S. E. Harris, Phys. Rev. Lett., 62, 1033 (1989)CrossRefADSGoogle Scholar
  9. 5b.
    M. O. Scully, S.-Y. Zhu, and A. Gavrielides, Phys. Rev. Lett., 62, 2813 (1989)CrossRefADSGoogle Scholar
  10. 5c.
    L. M. Narducci, M. O. Scully, C. H. Keitel, S.-Y. Zhu, and H. M. Doss, Opt. Commun. 86, 324 (1991)CrossRefADSGoogle Scholar
  11. 5d.
    for reviews see: O. Kocharovskaya, Phys. Rep. 219, 175 (1992)CrossRefADSGoogle Scholar
  12. 5e.
    M. O. Scully, Phys. Rep. 219,191 (1992).CrossRefADSGoogle Scholar
  13. 6.
    M. O. Scully, Phys. Rev. Lett. 67, 1855 (1991)CrossRefADSGoogle Scholar
  14. 6a.
    M. Fleischhauer, C. H. Keitel, M. O. Scully, C. Su, B. T. Ulrich, and S.-Y. Zhu, Phys. Rev. A 46, 1468 (1992)CrossRefADSGoogle Scholar
  15. 6b.
    M. Heischhauer, C. H. Keitel, M. O. Scully, and C. Su, Opt. Commun. 87, 109 (1992)CrossRefADSGoogle Scholar
  16. 6c.
    M. O. Scully and S.-Y. Zhu, Opt. Commun. 87, 134 (1992).CrossRefADSGoogle Scholar
  17. 7.
    J. P. Dowling and C. M. Bowden, Phys. Rev. Lett. 70, 1421 (1993).CrossRefADSGoogle Scholar
  18. 8.
    M. O. Scully and W. E. Lamb, Jr., Phys. Rev. 159, 208 (1967)CrossRefADSGoogle Scholar
  19. 8a.
    M. Sargent III, M. O. Scully, and W. E. Lamb Jr., Laser Physics, (Addison-Wesley; Reading, MA 1974).Google Scholar
  20. 9.
    U. Rathe, M. Heischhauer, S.-Y. Zhu, T. W. Hänsch, and M. O. Scully, Phys. Rev. A 47 4994 (1993).CrossRefADSGoogle Scholar
  21. 10.
    We use Mathematica, which is especially suited for this type of work, for the substitutions and concomitant plots of the real (χ’ NDD) and the imaginary (χ’ NDD) part of this susceptibility as a function of the dimensionless detuning Δ/g.Google Scholar
  22. 11.
    L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Wiley, New York, 1975).Google Scholar
  23. 12.
    C. M. Bowden and J. P. Dowling, Phys. Rev. A 47, 1247 (1993)CrossRefADSGoogle Scholar
  24. 12a.
    C. M. Bowden and J. P. Dowling, Phys. Rev. A erratum 49, 1514 (1994).CrossRefADSGoogle Scholar
  25. 13.
    F. A. Hopf, C. M. Bowden, and W. H. Louisell, Phys. Rev. A 29, 2591 (1984)CrossRefADSGoogle Scholar
  26. 13a.
    Y. Ben-Aryeh, C. M. Bowden, and J. C. Englund, Phys. Rev. A 34, 3917 (1986).CrossRefADSGoogle Scholar
  27. 14.
    R. Friedberg, S. R. Hartmann, and J. T. Manasseh, Phys. Rep. 7, 101 (1973)CrossRefADSGoogle Scholar
  28. 14a.
    R. Friedberg, S. R. Hartmann, and J. T. Manasseh, Phys. Rev. A 39, 3444 (1989)CrossRefADSGoogle Scholar
  29. 14b.
    R. Friedberg, S. R. Hartmann, and J. T. Manasseh, Phys. Rev. A 40, 2446 (1989)CrossRefADSGoogle Scholar
  30. 14c.
    J. J. Maki, M. S. Malcuit, J. E. Sipe, and R. W. Boyd, Phys. Rev. Lett. 67, 972 (1991).CrossRefADSGoogle Scholar
  31. 15.
    M. E. Crenshaw, M. Scalora, and C. M. Bowden, Phys. Rev. Lett. 68, 911 (1992)CrossRefADSGoogle Scholar
  32. 15a.
    M. E. Crenshaw and C. M. Bowden, Phys. Rev. Lett. 68, 3475 (1992).CrossRefADSGoogle Scholar
  33. 16.
    M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical Limiting and Switching in Nonlinear Photonic Bandgap Materials”, unpublished.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • C. M. Bowden
    • 1
  • J. P. Dowling
    • 2
  • A. S. Manka
    • 2
  • M. Fleischhauer
    • 3
  1. 1.Weapons Sciences Directorate, AMSMI-RD-WS-ST Research, Development, and Engineering CenterU.S. Army Missile CommandRedstone ArsenalUSA
  2. 2.National Research Council Research AssociatesUSA
  3. 3.Department of PhysicsLudwig-Maximilians-UniversitätMunichGermany

Personalised recommendations