Quantum Trajectories and Stochastic Schrödinger Equation for Nonlinear Optical Processes

  • P. Goetsch
  • R. Graham
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 77)


The stochastic Schrödinger equation in a linear and equivalent nonlinear forms arises naturally by the back action of a broad-band continuous-in-time measurement of a quantum observable. It represents the classical stochastic outcomes of single measurements as stochastic quantum expectation values performed with a stochastic wave-function. Applications of this description to some nonlinear optical processes such as subharmonic amplification, nonlinear absorption and second-harmonic generation are discussed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N. Gisin, Phys. Rev. Lett. 52, 1657 (1984).CrossRefADSMathSciNetGoogle Scholar
  2. [1a]
    Helv. Phys. Acta 62, 363 (1989)Google Scholar
  3. [2]
    P. Pearle, Phys. Rev. D 13, 857 (1976)CrossRefADSMathSciNetGoogle Scholar
  4. [3]
    L. Diósi, Phys. Lett. A 129, 419 (1988)CrossRefADSMathSciNetGoogle Scholar
  5. [4]
    N. Gisin, I. C. Percival, J. Phys. A 25, 5677 (1992).CrossRefMATHADSMathSciNetGoogle Scholar
  6. [4a]
    N. Gisin, I. C. Percival, Phys. Lett. A 167, 315 (1992)CrossRefADSMathSciNetGoogle Scholar
  7. [5]
    G. C. Ghirardi, P. Pearle, A. Rimini, Phys. Rev. A 42, 78 (1990)CrossRefADSMathSciNetGoogle Scholar
  8. [6]
    A. Barchielli, V. P. Belavkin, J. Phys. A 24, 1495 (1991)CrossRefADSMathSciNetGoogle Scholar
  9. [7]
    V. P. Belavkin, J. Math. Phys. 31, 2930 (1990).CrossRefMATHADSMathSciNetGoogle Scholar
  10. [7a]
    V. P. Belavkin, P. Staszewski, Phys. Rev. A 45, 1347 (1992)CrossRefADSGoogle Scholar
  11. [8]
    H. J. Carmichael, An Open Systems Approach to Quantum Optics, Lecture Notes in Physics m18, Berlin, Springer 1993MATHGoogle Scholar
  12. [9]
    H. M. Wiseman, G. J. Milburn, Phys. Rev. A 47, 642 (1993).CrossRefADSGoogle Scholar
  13. [9a]
    H. M. Wiseman, G. J. Milburn, Phys. Rev. A 47, 1652 (1993)CrossRefADSGoogle Scholar
  14. [10]
    M. J. Collet, C. W. Gardiner, Phys. Rev. A 30, 1386 (1984).CrossRefADSGoogle Scholar
  15. [10a]
    C. W. Gardiner, M. J. Collet, Phys. Rev. A 31, 3761 (1985)CrossRefADSMathSciNetGoogle Scholar
  16. [11]
    P. Goetsch, R. Graham, Ann. Physik 2, 706 (1993)CrossRefADSGoogle Scholar
  17. [12]
    M. Schlautmann, Zeitlich kontinuierliche Messungen an chaotischen Quantensystemen, Thesis, Universität Essen in preparationGoogle Scholar
  18. [13]
    M. J. Collet, private communicationGoogle Scholar
  19. [14]
    R. Graham, in Quantum Optics V, ed. by J. D. Harvey, D. F. Walls, Berlin, Springer, p. 46 (1989)Google Scholar
  20. [15]
    C. W. Gardiner: Quantum Noise, Berlin, Springer 1991MATHGoogle Scholar
  21. [16]
    R. Schack, A. Schenzle, Phys. Rev. A 44, 682 (1991)CrossRefADSGoogle Scholar
  22. [17]
    C. M. Savage, D. F. Walls, Optica Acta 30, 557 (1983)CrossRefADSGoogle Scholar
  23. [18]
    M. Dörfle, A. Schenzle, Z. Phys. B 65, 113 (1986)CrossRefADSMathSciNetGoogle Scholar
  24. [19]
    M. Dörfle, R. Graham, in Optical Instabilities, ed. by R. W. Boyd, M. G. Raymer, L. M. Narducci, Cambridge University Press, Cambridge, p. 352 (1986)Google Scholar
  25. [20]
    P. D. Drummond, K. J. McNeil, D. F. Walls, Optica Acta 28, 211 (1981)CrossRefADSGoogle Scholar
  26. [21]
    I. J. D. Craig, K. K. McNeil, Phys. Rev. A 41, 4009 (1990)CrossRefADSGoogle Scholar
  27. [22]
    P. D. Drummond, C. W. Gardiner, J. Phys. A 13, 2353 (1980).CrossRefADSMathSciNetGoogle Scholar
  28. [22a]
    P. D. Drummond, I. K. Mortimer, J. Comp. Phys. 93, 144 (1991).CrossRefMATHADSMathSciNetGoogle Scholar
  29. [22b]
    A. M. Smith, C. W. Gardiner, Phys. Rev. A 39, 3511 (1989)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • P. Goetsch
    • 1
  • R. Graham
    • 1
  1. 1.Fachbereich PhysikUniversität GH EssenEssenGermany

Personalised recommendations