Sodium Dodecylsulphate Electrophoresis

  • Gunter M. Rothe
Part of the Springer Labmanual book series (SLM)

Abstract

Sodium dodecylsulphate (SDS) consists of an aliphatic chain of 12 C atoms to which at one end a sulphate residue is bound. It forms complexes with both the polar and non- polar amino acid residues of proteins irrespective of their sizes and shapes, leaving the primary structure uninfluenced. In electrophoresis SDS is used:
  1. a)

    to separate (enzyme) proteins into their monomeric constituents,

     
  2. b)

    to estimate the molecular mass of unfolded (and reduced) polypeptides, and

     
  3. c)

    to keep membrane proteins in a solubilized state.

     

Keywords

Urea Mold Bacillus Polypeptide Trypsin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pitt-Rivers R, Impiombato FSA (1968) Biochem J109: 825–830Google Scholar
  2. 2.
    Reynolds JA, Tanford C (1970) Proc. Natl Acad Sei USA 66:1002–1007CrossRefGoogle Scholar
  3. 3.
    Reynolds JA (1970) J Biol Chem 245:5161–5165PubMedGoogle Scholar
  4. 4.
    Nelson CA (1971) J Biol Chem 246:3895–3901PubMedGoogle Scholar
  5. 5.Segrest JP, Jackson RL, Andrews EP, Marchesi VT (1971) Biochem Biophys Res Comm 44:Google Scholar
  6. 6.
    Shapiro AL, Vinuela E, Maizel JV (1967) Biochem Biophys Res Comm 28:815–820PubMedCrossRefGoogle Scholar
  7. 7.
    Wachneldt TV (1971) Anal Biochem 43:306–312CrossRefGoogle Scholar
  8. 8.
    Lambin P (1978) Anal Biochem 85:114–125PubMedCrossRefGoogle Scholar
  9. 9.
    Maizel JV (1971) Methods in Virology 5:179–246Google Scholar
  10. 10.
    Weber K, Osborn M (1969) J Biol Chem 244:4406–4412PubMedGoogle Scholar
  11. 11.
    Dunker AK, Rueckert RR (1969) J Biol Chem 244:5074–5080PubMedGoogle Scholar
  12. 12.
    Laemmli UK (1970) Nature 227:680–685PubMedCrossRefGoogle Scholar
  13. 13.
    Grefrath SP, Reynolds JA (1974) Proc Nad Acad Sei USA 71:3913–3916CrossRefGoogle Scholar
  14. 14.
    Barker GA, Cotman CW (1972) J Biol Chem 247:5856–5861Google Scholar
  15. 15.
    Anderson BL, Berry RW, Telser A (1983) Anal Biochem 32:365–375CrossRefGoogle Scholar
  16. 16.
    King J, Laemmli U (1971) J Mol Biol 62:465–477PubMedCrossRefGoogle Scholar
  17. 17.
    Lambin P, Rochu D, Fine JM (1976) Anal Biochem 74:567–575PubMedCrossRefGoogle Scholar
  18. 18.
    Rüchel R, Mesecke S, Wolfrum DI, Neuhoff, V (1974) Hoppe-Seyler’s Z Physiol. Chem 355: 997–1020Google Scholar
  19. 19.
    Rothe GM (1982) Electrophoresis 3:255–262CrossRefGoogle Scholar
  20. 20.
    Lasky M (1978) Protein molecular weight determination using Polyacrylamide gradient gels in the presence and absence of sodium dodecyl sulfate. In: Catsimpoolas N (ed), Electrophoresis ’78, North Holland, Amsterdam, pp 195–210Google Scholar
  21. 21.
    Poduslo JF, Rodbard D (1980) Anal Biochem 101:394–406PubMedCrossRefGoogle Scholar
  22. 22.
    Lacks SA, Springhorn SS, Rosenthal AL (1979) Anal Biochem 100:357–363PubMedCrossRefGoogle Scholar
  23. 23.
    Lacks SA, Springhorn SS (1980) J Biol Chem 255:746–773Google Scholar
  24. 24.
    Manrow RE, Dottin RP (1980) Proc Natl Acad Sei 77:730–734CrossRefGoogle Scholar
  25. 25.
    Dottin RP, Manrow RE, Fishel BR, Ankermann SL, Culleton, I.L (1979) Localization of enzymes in denaturing Polyacrylamide gels. In: Wu R (ed) Methods in enzymology vol 68. Academic Press, New York London Toronto Sydney San Francisco, pp 513–529Google Scholar
  26. 26.
    Weber K, Kuter DD (1971) J Biol Chem 246:4504–4509PubMedGoogle Scholar
  27. 27.
    Rosenthal AL, Lacks SA (1977) Anal Biochem 80:76–90PubMedCrossRefGoogle Scholar
  28. 28.
    Blank A, Sugiyama RH, Dekker CA (1982) Anal Biochem 120:267–275PubMedCrossRefGoogle Scholar
  29. 29.
    Blank A, Silber JR, Thelen MP, Dekker CA (1983) Anal Biochem 135:423–430PubMedCrossRefGoogle Scholar
  30. 30.
    Thelen MP, Blank A, McKeon TA, Dekker CA (1982) Fed Proc 41:1203Google Scholar
  31. 31.
    Matheka HD, Enzmann PJ, Bachrach HL, Migel B (1977) Anal Biochem 81:9–17PubMedCrossRefGoogle Scholar
  32. 32.
    Margulies MM, Tiffany HL (1984) Anal Biochem 136:309–313PubMedCrossRefGoogle Scholar
  33. 33.
    Dohnal JC, Garvin IE (1979) Biochim Biophys Acta 576:393–403PubMedGoogle Scholar
  34. 34.
    Zaman Z, Verwilghen RL (1979) Anal Biochem 100: 64–69PubMedCrossRefGoogle Scholar
  35. 35.
    Hager DA, Burgess RR (1980) Anal Biochem 109:76–86PubMedCrossRefGoogle Scholar
  36. 36.
    Russell RRB (1979) Anal Biochem 97:173–175PubMedCrossRefGoogle Scholar
  37. 37.
    Dulaney JT, Touster O (1970) Biochim Biophys Acta 196:29–34PubMedCrossRefGoogle Scholar
  38. 38.
    Huet J, Sentenac A, Fromageot P (1978) FEBS Letters 94:28–32PubMedCrossRefGoogle Scholar
  39. 39.
    Spanos A, Sedgwick SG, Yarranton GT, Hübscher U, Banks GR (1981) Nucleic Acids Res 9:5919–5925CrossRefGoogle Scholar
  40. 40.
    Ohta Y, Oguva Y, Wada A (1966) J Biol Chem 241:5919–5925PubMedGoogle Scholar
  41. 41.
    Takagi T, Toda H, Isemura T (1971) Bacterial and mold amylases. In: Boyer PD (ed) The Enzymes 3rd ed. Vol 5, Academic Press, New York, pp 235–271Google Scholar
  42. 42.
    Thoma JA, Spradlin JE, Dyget S (1971) Plant and animal amylases. In: Boyer PD (ed) The Enzymes 3rd ed. Vol 5, Academic Press, New York, pp 115–189Google Scholar
  43. 43.
    Olive C, Levy HR (1971) J Biol Chem 246:2043–2046Google Scholar
  44. 44.
    Appella E, Markert CL (1961) Biochem Biophys Res Commun 6:171–176PubMedCrossRefGoogle Scholar
  45. 45.
    Blank A, Dekker CA (1982) Biochem 20:2261–2267Google Scholar
  46. 46.
    Anfinsen CB (1962) Brookhaven Symp Biol 15:184–198PubMedGoogle Scholar
  47. 47.
    Martin CJ (1964) Biochemistry 3:1635–1643PubMedCrossRefGoogle Scholar
  48. 48.
    Westhead EW (1964) Biochemistry 3:1062–1068PubMedCrossRefGoogle Scholar
  49. 49.
    Kaufmann BT (1963) Biochem Biophys Res Commun 10:449–453CrossRefGoogle Scholar
  50. 50.
    Kaufmann BT (1968) J Biol Chem 243: 6001–6008Google Scholar
  51. 51.
    Perkins JP, Bertino JR (1965) Biochemistry 4: 847–853PubMedCrossRefGoogle Scholar
  52. 52.Stadtman ER (1960) Advan Enzymol 28:41–154Google Scholar
  53. 53.
    Schneidermann LJ (1965) Biochem Biophys Res Commun 20:763–767CrossRefGoogle Scholar
  54. 54.
    Weinbaum G, Markman R (1966) Biochim Biophys Acta 124: 207–209PubMedCrossRefGoogle Scholar
  55. 55.
    Rothe GM, Maurer WD (1986). One-dimensional PAA-gel electrophoretic techniques to separate functional and denatured proteins. In: Dunn MJ (ed) Electrophoresis of Proteins. Wright, Bristol, pp 37–140Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Gunter M. Rothe
    • 1
  1. 1.Institut für Allgemeine Botanik, Fachbereich BiologieJohannes Gutenberg-UniversitätMainzGermany

Personalised recommendations