Advertisement

Sodium Dodecylsulphate Electrophoresis

  • Gunter M. Rothe
Part of the Springer Labmanual book series (SLM)

Abstract

Sodium dodecylsulphate (SDS) consists of an aliphatic chain of 12 C atoms to which at one end a sulphate residue is bound. It forms complexes with both the polar and non- polar amino acid residues of proteins irrespective of their sizes and shapes, leaving the primary structure uninfluenced. In electrophoresis SDS is used:
  1. a)

    to separate (enzyme) proteins into their monomeric constituents,

     
  2. b)

    to estimate the molecular mass of unfolded (and reduced) polypeptides, and

     
  3. c)

    to keep membrane proteins in a solubilized state.

     

Keywords

Disulphide Bond Disulphide Bridge Leuconostoc Mesenteroides Ammonium Persulphate Electrode Buffer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pitt-Rivers R, Impiombato FSA (1968) Biochem J109: 825–830Google Scholar
  2. 2.
    Reynolds JA, Tanford C (1970) Proc. Natl Acad Sei USA 66:1002–1007CrossRefGoogle Scholar
  3. 3.
    Reynolds JA (1970) J Biol Chem 245:5161–5165PubMedGoogle Scholar
  4. 4.
    Nelson CA (1971) J Biol Chem 246:3895–3901PubMedGoogle Scholar
  5. 5.Segrest JP, Jackson RL, Andrews EP, Marchesi VT (1971) Biochem Biophys Res Comm 44:Google Scholar
  6. 6.
    Shapiro AL, Vinuela E, Maizel JV (1967) Biochem Biophys Res Comm 28:815–820PubMedCrossRefGoogle Scholar
  7. 7.
    Wachneldt TV (1971) Anal Biochem 43:306–312CrossRefGoogle Scholar
  8. 8.
    Lambin P (1978) Anal Biochem 85:114–125PubMedCrossRefGoogle Scholar
  9. 9.
    Maizel JV (1971) Methods in Virology 5:179–246Google Scholar
  10. 10.
    Weber K, Osborn M (1969) J Biol Chem 244:4406–4412PubMedGoogle Scholar
  11. 11.
    Dunker AK, Rueckert RR (1969) J Biol Chem 244:5074–5080PubMedGoogle Scholar
  12. 12.
    Laemmli UK (1970) Nature 227:680–685PubMedCrossRefGoogle Scholar
  13. 13.
    Grefrath SP, Reynolds JA (1974) Proc Nad Acad Sei USA 71:3913–3916CrossRefGoogle Scholar
  14. 14.
    Barker GA, Cotman CW (1972) J Biol Chem 247:5856–5861Google Scholar
  15. 15.
    Anderson BL, Berry RW, Telser A (1983) Anal Biochem 32:365–375CrossRefGoogle Scholar
  16. 16.
    King J, Laemmli U (1971) J Mol Biol 62:465–477PubMedCrossRefGoogle Scholar
  17. 17.
    Lambin P, Rochu D, Fine JM (1976) Anal Biochem 74:567–575PubMedCrossRefGoogle Scholar
  18. 18.
    Rüchel R, Mesecke S, Wolfrum DI, Neuhoff, V (1974) Hoppe-Seyler’s Z Physiol. Chem 355: 997–1020Google Scholar
  19. 19.
    Rothe GM (1982) Electrophoresis 3:255–262CrossRefGoogle Scholar
  20. 20.
    Lasky M (1978) Protein molecular weight determination using Polyacrylamide gradient gels in the presence and absence of sodium dodecyl sulfate. In: Catsimpoolas N (ed), Electrophoresis ’78, North Holland, Amsterdam, pp 195–210Google Scholar
  21. 21.
    Poduslo JF, Rodbard D (1980) Anal Biochem 101:394–406PubMedCrossRefGoogle Scholar
  22. 22.
    Lacks SA, Springhorn SS, Rosenthal AL (1979) Anal Biochem 100:357–363PubMedCrossRefGoogle Scholar
  23. 23.
    Lacks SA, Springhorn SS (1980) J Biol Chem 255:746–773Google Scholar
  24. 24.
    Manrow RE, Dottin RP (1980) Proc Natl Acad Sei 77:730–734CrossRefGoogle Scholar
  25. 25.
    Dottin RP, Manrow RE, Fishel BR, Ankermann SL, Culleton, I.L (1979) Localization of enzymes in denaturing Polyacrylamide gels. In: Wu R (ed) Methods in enzymology vol 68. Academic Press, New York London Toronto Sydney San Francisco, pp 513–529Google Scholar
  26. 26.
    Weber K, Kuter DD (1971) J Biol Chem 246:4504–4509PubMedGoogle Scholar
  27. 27.
    Rosenthal AL, Lacks SA (1977) Anal Biochem 80:76–90PubMedCrossRefGoogle Scholar
  28. 28.
    Blank A, Sugiyama RH, Dekker CA (1982) Anal Biochem 120:267–275PubMedCrossRefGoogle Scholar
  29. 29.
    Blank A, Silber JR, Thelen MP, Dekker CA (1983) Anal Biochem 135:423–430PubMedCrossRefGoogle Scholar
  30. 30.
    Thelen MP, Blank A, McKeon TA, Dekker CA (1982) Fed Proc 41:1203Google Scholar
  31. 31.
    Matheka HD, Enzmann PJ, Bachrach HL, Migel B (1977) Anal Biochem 81:9–17PubMedCrossRefGoogle Scholar
  32. 32.
    Margulies MM, Tiffany HL (1984) Anal Biochem 136:309–313PubMedCrossRefGoogle Scholar
  33. 33.
    Dohnal JC, Garvin IE (1979) Biochim Biophys Acta 576:393–403PubMedGoogle Scholar
  34. 34.
    Zaman Z, Verwilghen RL (1979) Anal Biochem 100: 64–69PubMedCrossRefGoogle Scholar
  35. 35.
    Hager DA, Burgess RR (1980) Anal Biochem 109:76–86PubMedCrossRefGoogle Scholar
  36. 36.
    Russell RRB (1979) Anal Biochem 97:173–175PubMedCrossRefGoogle Scholar
  37. 37.
    Dulaney JT, Touster O (1970) Biochim Biophys Acta 196:29–34PubMedCrossRefGoogle Scholar
  38. 38.
    Huet J, Sentenac A, Fromageot P (1978) FEBS Letters 94:28–32PubMedCrossRefGoogle Scholar
  39. 39.
    Spanos A, Sedgwick SG, Yarranton GT, Hübscher U, Banks GR (1981) Nucleic Acids Res 9:5919–5925CrossRefGoogle Scholar
  40. 40.
    Ohta Y, Oguva Y, Wada A (1966) J Biol Chem 241:5919–5925PubMedGoogle Scholar
  41. 41.
    Takagi T, Toda H, Isemura T (1971) Bacterial and mold amylases. In: Boyer PD (ed) The Enzymes 3rd ed. Vol 5, Academic Press, New York, pp 235–271Google Scholar
  42. 42.
    Thoma JA, Spradlin JE, Dyget S (1971) Plant and animal amylases. In: Boyer PD (ed) The Enzymes 3rd ed. Vol 5, Academic Press, New York, pp 115–189Google Scholar
  43. 43.
    Olive C, Levy HR (1971) J Biol Chem 246:2043–2046Google Scholar
  44. 44.
    Appella E, Markert CL (1961) Biochem Biophys Res Commun 6:171–176PubMedCrossRefGoogle Scholar
  45. 45.
    Blank A, Dekker CA (1982) Biochem 20:2261–2267Google Scholar
  46. 46.
    Anfinsen CB (1962) Brookhaven Symp Biol 15:184–198PubMedGoogle Scholar
  47. 47.
    Martin CJ (1964) Biochemistry 3:1635–1643PubMedCrossRefGoogle Scholar
  48. 48.
    Westhead EW (1964) Biochemistry 3:1062–1068PubMedCrossRefGoogle Scholar
  49. 49.
    Kaufmann BT (1963) Biochem Biophys Res Commun 10:449–453CrossRefGoogle Scholar
  50. 50.
    Kaufmann BT (1968) J Biol Chem 243: 6001–6008Google Scholar
  51. 51.
    Perkins JP, Bertino JR (1965) Biochemistry 4: 847–853PubMedCrossRefGoogle Scholar
  52. 52.Stadtman ER (1960) Advan Enzymol 28:41–154Google Scholar
  53. 53.
    Schneidermann LJ (1965) Biochem Biophys Res Commun 20:763–767CrossRefGoogle Scholar
  54. 54.
    Weinbaum G, Markman R (1966) Biochim Biophys Acta 124: 207–209PubMedCrossRefGoogle Scholar
  55. 55.
    Rothe GM, Maurer WD (1986). One-dimensional PAA-gel electrophoretic techniques to separate functional and denatured proteins. In: Dunn MJ (ed) Electrophoresis of Proteins. Wright, Bristol, pp 37–140Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Gunter M. Rothe
    • 1
  1. 1.Institut für Allgemeine Botanik, Fachbereich BiologieJohannes Gutenberg-UniversitätMainzGermany

Personalised recommendations