Skip to main content

Methods for Separating Native Enzymes

  • Chapter
Electrophoresis of Enzymes

Part of the book series: Springer Labmanual ((SLM))

Abstract

In the course of electrophoresis the stability of an enzyme depends on such conditions as (a) pH-value, (b) ion strength and ion species, (c) effector molecules, (d) temperature and (e) properties of the separation matrix. These parameters were empirically optimized for starch gel electrophoresis [1–3] and cellulose acetate electrophoresis [4, 5] when analyzing predominantly animal and human specimen. A major advantage of these types of separation media is that practically every buffer system can be used to separate enzymes whereas in disc-gel electrophoresis [6–8] the number of applicable buffer systems is limited. When using isoelectric focusing to separate native enzymes no buffer choice at all is possible [9–10]. On the other hand, starch gel electrophoresis is more time consuming than cellulose acetate electrophoresis. Cellulose acetate membranes are commercially available and easy to handle, and separation and enzyme visualization together do not take longer than 1–1.5 h. In clinical diagnosis therefore, both methods are favoured. Disc-gel electrophoresis, gradient gel electrophoresis and isoelectric focusing are used if the separation capacities of cellulose acetate membranes are insufficient or when the isoelectric point or the molecular mass of an enzyme is to be estimated. The data compiled in Tables 3.1 and 3.2 can be used to decide between methods for a particular case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Raymond S (1962) Clin Chem 8:455–470

    PubMed  CAS  Google Scholar 

  2. Maurer HR (1968) Disk-Elektrophorese, Walter de Gruyter & Co., Berlin

    Google Scholar 

  3. McLellan T (1982) Anal Biochem 126:94–99

    Article  PubMed  CAS  Google Scholar 

  4. Rodbard D, Chrambach A (1971) Anal Biochem 40:95–134

    Article  PubMed  CAS  Google Scholar 

  5. Thomas JM, Hodes ME (1981) Anal Biochem 118:194–196

    Article  PubMed  CAS  Google Scholar 

  6. Davis BJ (1964) Annals N Y Acad Sei 121:404–427

    Article  CAS  Google Scholar 

  7. Ornstein L (1964) Annals N Y Acad Sei 121:321–349

    Article  CAS  Google Scholar 

  8. Clarke JT (1964) Ann N Y Acad Sei 121:428–436

    Article  CAS  Google Scholar 

  9. Williams DE, Reisfeld RA (1964) Annals N Y Acad Sei 121:373–381

    Article  CAS  Google Scholar 

  10. Aronsson T, Grönwall A (1957) Scand J Clin Lab Invest 9:338–341

    PubMed  CAS  Google Scholar 

  11. Kleiner H, Schräm E (1966) Clin Chim Acta 14:377–389

    Article  PubMed  CAS  Google Scholar 

  12. Fitt PS, Fitt EA, Wille H (1968) Biochem 110:475–479

    CAS  Google Scholar 

  13. Neuhoff V (1968) Arzneim Forsch 18:35–39

    CAS  Google Scholar 

  14. Neuhoff V, Lezius A (1968) Z Naturforsch (B) 23: 812–819

    CAS  Google Scholar 

  15. Ogilvie JW, Sightler IH, Clark RB (1969) Biochemistry 8:3557–3567

    Article  PubMed  CAS  Google Scholar 

  16. McGregor RR, Schnaitman CA, Normanseil DE (1974) J Biol Chem 249:5321–5327

    Google Scholar 

  17. Yonezawa S, Hori SH (1975) I Histochem Cytochem 23:745–751

    Article  CAS  Google Scholar 

  18. Willhardt I, Wiederanders B (1975) Anal Biochem 63: 263–266

    Article  PubMed  CAS  Google Scholar 

  19. Pierce M, Cummings RC, Roth S (1980) Anal Biochem 102:441–449

    Article  PubMed  CAS  Google Scholar 

  20. Davies RC, Neuberger A (1973) Biochem 1133:471–492

    Google Scholar 

  21. Karpetsky TP, Davies GE, Shriver KK, Levy CC (1980) Biochem 1189:277–284

    Google Scholar 

  22. Millard SA, Kubose A, Gal EM (1969) I Biol Chem 244:2511–2515

    CAS  Google Scholar 

  23. Nimmo HG, Nimmo GA (1982) Anal Biochem 121:17–22

    Article  PubMed  CAS  Google Scholar 

  24. Ornstein LB, Davis J (1962) Disc electrophoresis, Distillation Products Ind, Rochester and CANALCO, brochures, Bethesda, unpublished

    Google Scholar 

  25. Reisfeld RA, Lewis UJ, Williams DE (1962) Nature 201: 281–283

    Article  Google Scholar 

  26. Felgenhauer K (1974) Hoppe-Seylers’s Z Physiol Chem 355:1281–1290

    Article  CAS  Google Scholar 

  27. Anderson BL, Berry RW, Telser A (1983) Anal Biochem 132:365–375

    Article  PubMed  CAS  Google Scholar 

  28. Neuhoff V (1973) Micromethods in molecular biology. Springer, Berlin, pp 4–83

    Google Scholar 

  29. Rothe GM (1991) Determination of the size, isomeric nature and net charge of enzymes by pore gradient gel electrophoresis. In: Chrambach A, Dunn MI, Radola BJ (eds) Advances in electrophoresis vol 4. VCH Publishers, New York, pp 251–358

    Google Scholar 

  30. Hedrick JL, Smith AJ (1968) Arch Biochem Biophys 126:155–164

    Article  PubMed  CAS  Google Scholar 

  31. Rothe GM, Maurer WD (1986) One-dimensional PAA-gel electrophoretic techniques to separate functional and denatured proteins. In: Dunn MJ (ed) Gel electrophoresis of proteins. Wright, Bristol, pp 37–140

    Google Scholar 

  32. Esposito JJ, Obijeski JF (1976) Prep Biochem 6:431–442

    Article  PubMed  CAS  Google Scholar 

  33. Mahadik SP (1975) Anal Biochem 76: 615–633

    Article  Google Scholar 

  34. Margolis J, Kenrick KG (1968) Anal Biochem 25:347–362

    Article  PubMed  CAS  Google Scholar 

  35. Wright GL, Farrell KB, Roberts D (1973) Biochim Biophys Acta 295:396–411

    PubMed  CAS  Google Scholar 

  36. Martin RG, Ames BN (1986) J Biol Chem 236:1372–1374

    Google Scholar 

  37. Righetti PG, Gelfi C, Gianazza E (1986) Conventional isoelectric focusing and immobilised pH gradients. In: Dunn MJ (ed) Gel electrophoresis of proteins. Wright, Bristol, pp 141–202

    Google Scholar 

  38. Saravis CA, Cook E (1979) Marine Colloid’s Instruction Leaflet, Marine Colloid, Rockland

    Google Scholar 

  39. Altland K, Rossmann U (1985) Electrophoresis 6:314–325

    Article  CAS  Google Scholar 

  40. Rothe GM, Weidmann H (1991) Electrophoresis 12:703–709

    Article  PubMed  CAS  Google Scholar 

  41. Görg A, Postel W, Westermeier R (1978) Anal Biochem 89:60

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rothe, G.M. (1994). Methods for Separating Native Enzymes. In: Electrophoresis of Enzymes. Springer Labmanual. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79069-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79069-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79071-3

  • Online ISBN: 978-3-642-79069-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics