Skip to main content

Precession, Eccentricity, Obliquity, Insolation and Paleoclimates

  • Conference paper
Long-Term Climatic Variations

Part of the book series: NATO ASI Series ((ASII,volume 22))

Abstract

Different parameters related to the solar radiation received at the top of the atmosphere are derived and their long-term variations analysed in the frequency domain. The annual mean energy received by the whole Earth is varying in time according to the variations of the mean distance from the Earth to the Sun, i.e. as a function of (1 − e 2)−1/2. The so-called 100 ka period of the eccentricity (and the other periods as well) are originating from a combination of the fundamental periods of the climatic precession parameters. The insolation at a given latitude and for a fixed longitude of the Earth on its orbit is a function of obliquity through the factor related to the zenith angle of the Sun and of precession through the distance factor. Moreover a deeper analysis of the spectrum of the distance factor shows that it contains also, with much less power, half precession periods, eccentricity periods and combination tones between eccentricity and precession. Over the Quaternary, the latitudes of the polar and the tropical circles, varying with obliquity, are situated respectively between 65.5° and 68° and between 22° and 24.5°. Their present-day motion towards north is estimated to be 14.4 m per year. Finally, it is shown that in most insolation parameters, the precessional signal dominates the obliquity one, except in high polar latitudes mainly of the winter hemisphere, although the power of the obliquity signal increases from low to high latitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Backman J., Pestiaux P., Zimmerman H. and O. Hermelin, 1986. Palaeoclimatic and palaeoceanographic development in the Pliocene North Atlantic: Discoaster accumulation and coarse fraction data. In: C.P. Summerhayes and N.J. Shackleton (eds), North Atlantic Palaeoceanography, Geological Society, Special Publ. n° 21, pp. 231–242.

    Google Scholar 

  • Bard E., Hamelin B., Faribanks R.G. and A. Zindler, 1990. Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U-Th ages from Barbados corals. Nature, 345, pp. 405–410.

    Article  Google Scholar 

  • Barnola J.M., Raynaud D., Korotkevitch Y.S. and C. Lorius, 1987. Vostok ice core: a 160,000 year record of atmospheric CO2. Nature, 329 (6138), pp. 408–414.

    Article  Google Scholar 

  • Benzi R., Parisi G., Sutera A. and A. Vulpiani, 1982. Stochastic resonance in climatic change. Tellus, 34, pp. 10–16.

    Article  Google Scholar 

  • Berger A., 1973. Théorie astronomique des paléoclimats. These de doctorat, Faculté des Sciences, Université Catholique de Louvain. Unpublished manuscript.

    Google Scholar 

  • Berger A., 1975. Astronomical theory of paleoclimates: a cascade of accuracy. WMO-IAMAP, Norwich, WMO n° 421, pp. 65–72, Genève.

    Google Scholar 

  • Berger A., 1976. Obliquity and precession for the last 5,000,000 years. Astronomy and Astrophysics, 51, pp. 127–135.

    Google Scholar 

  • Berger A., 1977a. Support for the astronomical theory of climatic change. Nature, 268, pp. 44–45.

    Article  Google Scholar 

  • Berger A., 1977b. Long term variations of the Earth’s orbital elements. Celestial Mechanics, 5, pp. 3–74.

    Google Scholar 

  • Berger A., 1978. Long term variations of daily insolation and Quaternary climatic changes. Journal of Atmospheric Sciences, 35 (12), pp. 2362–2367.

    Article  Google Scholar 

  • Berger A., 1988. Milankovitch theory and climate. Review of Geophysics, 26 (4), pp. 624–657.

    Article  Google Scholar 

  • Berger A., 1989a. Pleistocene climatic variability at astronomical frequencies. Quaternary International, 2, pp. 1–14.

    Article  Google Scholar 

  • Berger A., 1989b. The spectral characteristics of pre-Quaternary climatic records, an example of the relationship between the astronomical theory and geo-sciences. In: A. Berger, S. Schneider and J.CI. Duplessy (eds), Climate and Geo-Sciences, a Challenge for Science and Society in the 21st Century, pp. 47–76, Kluwer, Dordrecht, Holland.

    Google Scholar 

  • Berger A. and P. Pestiaux, 1984. Accuracy and stability of the Quaternary terrestrial insolation. In: A. Berger, J. Imbrie, J. Hays, G. Kukla and B. Saltzman (eds), Milankovitch and Climate, pp. 83–112, D. Reidel Publ. Company, Dordrecht, Holland.

    Google Scholar 

  • Berger A., Loutre M.F. and V. Dehant, 1989. Influence of the changing lunar orbit on the astronomical frequencies of pre-Quaternary insolation patterns. Paleoceanography, 4 (5), pp. 555–564.

    Article  Google Scholar 

  • Berger A. and M.F. Loutre, 1990. Origine des frequences des éléments astronomiques intervenant dans le calcul de l’insolation. Bulletin Sciences, 1-3/90, pp. 45-106, Académie Royale des Sciences, des Lettres et des Beaux-Arts de Belgique.

    Google Scholar 

  • Berger A., Gallée H., Fichefet Th., Marsiat I. and C. Tricot, 1990. Testing the astronomical theory with a coupled climate-ice sheet model. In: L.D. Labeyrie and C. Jeandel (eds), Geochemical Variability in the Oceans, Ice and Sediments. Palaeogeography, Palaeoecology, 89(1/2), Global and Planetary Change Section, 3(1/2), pp. 125–141.

    Google Scholar 

  • Berger A. and M.F. Loutre, 1991. Insolation values for the climate of the last 10 million years. Quaternary Science Reviews, 10 n°4, pp. 297–317.

    Google Scholar 

  • Berger A., Gallée H. and C. Tricot, 1993a. Glaciation and déglaciation mechanisms in a coupled 2-D climate - ice sheet model. Journal of Glaciology, (in press).

    Google Scholar 

  • Berger A., Loutre M.F., and C. Tricot, 1993b. Insolation and Earth’s orbital periods. J. Geophys. Res., (in press).

    Google Scholar 

  • Birchfield G.E. and J. Weertman, 1978. A note on the spectral response of a model continental ice sheet. Journal of Geophysical Research, 83 (C8), pp. 4123–4125.

    Article  Google Scholar 

  • Boyle E.A. and L.D. Keigwin, 1985/1986. Comparison of Atlantic and Pacific paleochemical records for the last 215,000 years: Changes in deep ocean circulation and chemical inventories. Earth Plan. Sci. Lett., 76, pp. 135–150.

    Google Scholar 

  • Bretagnon P., 1974. Termes à longues périodes dans le système solaire. Astronomy and Astrophysics, 30 (1), pp. 141–154.

    Google Scholar 

  • Broecker W.S., Thurber D.L., Goddard J., Ku T., Matthews R.K. and K.J. Mesolella, 1968. Milankovitch hypothesis supported by precise dating of coral reefs and deep sea sediments. Science, 159, pp. 297–300.

    Article  Google Scholar 

  • Brouwer D., and G.M. Clemence, 1961. Methods of Celestial Mechanics. Academic Press, New York, 598 p.

    Google Scholar 

  • Cerveny R.S., 1991. Orbital signals in the diurnal cycle of radiation. J. Geophys. Res., 96(D9), pp. 17, 209–17, 215.

    Google Scholar 

  • CLIMAP Project Members, 1976. The surface of the Ice-Age Earth. Science, 191, pp. 1131–1137.

    Article  Google Scholar 

  • CLIMAP Project Members, 1981. Seasonal reconstruction of the Earth’s surface at the Last Glacial maximum, Mclntyre A. and Cline R. (eds), Geological Society of America. Map and Chart Series MC-36, Boulder, pp. 1–18.

    Google Scholar 

  • COHMAP Members, 1988. Climatic changes of the last 18,000 years: Observations and model simulations. Science, 241, pp. 1043–1052.

    Article  Google Scholar 

  • Crowley T.J., 1988. Paleoclimate modelling. In: M. Schlesinger (ed.), Physically-Based Modelling and Simulation of Climate and Climatic Change, pp. 883–949, Kluwer Academic Publishers, Dordrecht, Holland.

    Google Scholar 

  • Curry W.B. and T.J. Crowley, 1987. The δ13C of equatorial Atlantic surface waters: implications for ice-age pCO2 levels. Paleoceanography, 2, pp. 489–517.

    Article  Google Scholar 

  • Emiliani C., 1966. Isotopic paleotemperatures. Science, 154 (3751), pp. 851–857.

    Article  Google Scholar 

  • Fischer A.G., 1986. Climatic rhythms recorded in strata. Ann. Rev. Earth Planet. Sci., 14, pp. 351–376.

    Article  Google Scholar 

  • Gallée H., van Ypersele J.P., Fichefet Th., Marsiat I., Tricot C. and A. Berger, 1992. Simulation of the last glacial cycle by a coupled, sectorially averaged climate - ice- sheet model. II. Response to insolation and CO2 variation. Journal of Geophysical Research, 97(D14), pp. 15, 713–15, 740.

    Google Scholar 

  • Ghil M., and H. Le Treut, 1981. A climate model with Cryodynamics and Geodynamics. Journal of Geophysical Research, 86, pp. 5262–5270.

    Article  Google Scholar 

  • Godart O., 1986. Geometrical insolation of a planet. Annales de la Société Scientifique de Bruxelles, T. 100 II, pp. 53–85.

    Google Scholar 

  • Hasselman K., 1976. Stochastic climate models, part I. Tellus, 28, p. 473.

    Article  Google Scholar 

  • Hays J.D., Imbrie J. and N.J. Shackleton, 1976. Variations in the Earth’s orbit: pacemaker of the Ice Ages. Science, 194, pp. 1121–1132.

    Article  Google Scholar 

  • Herbert T.D. and A.G. Fischer, 1986. Milankovitch climatic origin of mid-Cretaceous black shale rhythms, Central Italy. Nature, 321 (6072), pp. 739–743.

    Article  Google Scholar 

  • Hilgen F.J., 1987. Sedimentary rhythms and high resolution chrono-stratigraphic correlations in the Mediterranean Pliocene. Newsletters Stratigraphy, 17 (2), pp. 109–127.

    Google Scholar 

  • Hilgen F.J. and C.G. Langereis, 1989. Sedimentary cycles in the Mediterranean Pliocene: discrepancies with the quasi-periods of the Earth’s orbital cycles ? In: D.G. Smith, A. Berger, P.L. de Boer (eds), Milankovitch Cyclicity in the Pre-Pleistocene Stratigraphic Record, Terra Abstracts, 1 (1), p. 241.

    Google Scholar 

  • Hyde W.T. and W.R. Peltier, 1985. Sensitivity experiments with a model of the ice age cycle. The response of harmonic forcing. Journal of Atmospheric Sciences, 42 (20), pp. 2170–2188.

    Article  Google Scholar 

  • Imbrie J., and J.Z. Imbrie, 1980. Modelling the climatic response to orbital variations. Science, 207, pp. 943–953.

    Article  Google Scholar 

  • Imbrie J., and N.G. Kipp, 1971. New micropaleontological method for quantitative paleoclimatology: application to a Late Pleistocene Caribbaen Core. In: K.K. Turekian (ed.), Late Cenozoic Glacial Ages, pp. 71–81, Yale University Press, New Haven.

    Google Scholar 

  • Imbrie J., Hays J., Martinson D.G., Mclntyre A., Mix A.C., Morley J.J., Pisias N.G., Prell W.L. and N.J. Shackleton, 1984. The orbital theory of Pleistocene climate: support from a revised chronology of the marine 18O record. In: A. Berger, J. Imbrie, J. Hays, G. Kukla and B. Saltzman (eds), Milankovitch and Climate, pp. 269–305, D. Reidel Publ. Company, Dordrecht, Holland.

    Google Scholar 

  • Imbrie J., Mclntyre A. and A. Mix, 1989. Oceanic response to orbital forcing in the Late Quaternary: observational and experimental strategies. In: Berger A., Schneider S., and Duplessy J.CI. (eds), Climate and Geo-Sciences, pp. 121–164, Kluwer, Dordrecht, Holland.

    Google Scholar 

  • Janecek T.R. and D.K. Rea, 1984. Pleistocene fluctuations in Northern Hemisphere tradewinds and westerlies. In: A. Berger, J. Imbrie, J. Hays. G. Kukla and B. Saltzman (eds), Milankovitch and Climate, pp. 331–347, D. Reiael, Dordrecht, Holland.

    Google Scholar 

  • Jouzel J., Lorius CL, Petit J.R., Genthon C., Barkov N.I. and V.M. Kotlyakov and V.M. Petrov, 1987. Vostok ice core: a continuous isotope temperature record over the last climatic cycle. Nature, 329 (6138), pp. 403–408.

    Article  Google Scholar 

  • Kominz M.A. and N.G. Pisias, 1979. Pleistocene climate: deterministic or stochastic? Science, 204, pp. 171–173.

    Article  Google Scholar 

  • Kutzbach J.E., 1985. Modeling of paleoclimates. Adv. Geophys., 28A, pp. 159–196.

    Article  Google Scholar 

  • Laskar J., 1988. Secular evolution of the solar system over 10 millions years. Astronomy and Astrophysics, 198, pp. 341–362.

    Google Scholar 

  • Lean J., 1991. Variations in the Sun’s radiative output. Review of Geophysics, 29 (4), pp. 505–535.

    Article  Google Scholar 

  • Lindzen R.S., 1986. A simple model for 100K-year oscillations in glaciation. Journal of Atmospheric Sciences, 43 (10), pp. 986–996.

    Article  Google Scholar 

  • Loutre M.F., 1993. Paramètres orbitaux et cycles diurne et saisonnier des insolations. Thèse de doctorat, Faculté des Sciences, Université Catholique de Louvain, Louvain- la-Neuve. Unpublished manuscript.

    Google Scholar 

  • McIntyre A., Ruddiman W.F., Karlin K. and A.C. Mix, 1989. Surface water response of the equatorial Atlantic Ocean to orbital forcing. Paleoceanography, 4, pp. 19–55.

    Article  Google Scholar 

  • Milankovitch M., 1941. Kanon der Erdbestrahlung. Royal Serbian Academy, Spec. publ. 132, section of Mathematical and Natural Sciences, vol. 33 (published in English by Israel program for Scientific Translation, for the U.S. Department of Commerce and the National Science Foundation, Washington D.C., 1969 ).

    Google Scholar 

  • Molfino B., Heusser L.H. and G.M. Woillard, 1984. Frequency components of a Grande Pile pollen record: Evidence of precessional orbital forcing. In: A. Berger, J. Imbrie, J. Hays, G. Kukla and B. Saltzman (eds), Milankovitch and Climate, pp. 391–404, D. Reidel, Dordrecht, Holland.

    Google Scholar 

  • Negrini R.M., Verosub K.L. and J.O. Davis, 1988. The middle to late Pleistocene geomagnetic field recorded in fine-grained sediments from Summer Lake, Oregon, and Double Hot Springs, Nevada, USA. Earth and Planetary Science Letters, 87, pp. 173–192.

    Article  Google Scholar 

  • Nicolis C., 1980. Response of the Earth-atmosphere system to a fluctuating solar input. In: Sun and Climate, pp. 385–396, CNES-CRS-DGRST, Toulouse, October 1980.

    Google Scholar 

  • Nicolis C., 1982. Stochastic aspects of climatic transitions-response to a periodic forcing. Tellus, 34, pp. 1–9.

    Article  Google Scholar 

  • Oerlemans J., 1980. Model experiments on the 100,000-yr glacial cycle. Nature, 287, pp. 430–432.

    Article  Google Scholar 

  • Olsen P.E., 1986. A 40-million-year lake record of Early Mesozoic orbital climatic forcing. Science, 234, pp. 842–848.

    Article  Google Scholar 

  • Pestiaux P., van der Mersch I., Berger A. and J.CI. Duplessy, 1988. Paleoclimatic variability at frequencies ranging from 1 cycle per 10,000 years to 1 cycle per 1,000 years: evidence for non-linear behavior of the climate system. Climatic Change, 12 (1), pp. 9–37.

    Article  Google Scholar 

  • Pokras E.M. and A.C. Mix, 1987. Earth’s precession cycle and Quaternary climatic changes in tropical Africa. Nature, 326, pp. 486–487.

    Article  Google Scholar 

  • Pollard D., 1982. A simple ice sheet model yields realistic 100 kyr glacial cycles. Nature, 296, pp. 334–338.

    Article  Google Scholar 

  • Pollard D., 1984. Some ice-age aspects of a calving ice-sheet model. In: Berger A., Imbrie J., Hays J., Kukla G. and Saltzman B. (eds), Milankovitch and Climate, pp. 541–564, Reidel Dordrecht, Holland.

    Google Scholar 

  • Prell W.L., 1984. Monsoonal climate of the Arabian Sea during the late Quaternary: A response to changing solar radiation. In: Berger A., Imbrie J., Hays J., Kukla G. ana Saltzman B. (eds), Milankovitch and Climate, pp. 349–366, Reidel, Dordrecht, Holland.

    Google Scholar 

  • Ruddiman W.F. and A. McIntyre, 1984. Ice-age thermal response and climatic role of the surface Atlantic Ocean, 40°N to 63°N. Geol. Soc. Am. Bull., 95, pp. 381–396.

    Google Scholar 

  • Ruddiman W.E., Shackleton N.J. and A. Mclntyre, 1986. North Atlantic sea-surface temperatures for the last 1.1 million years. In: Summerhayes C.P. and Shackleton N.J. (eds), North Atlantic Palaeoceanography Geological Society Special Publication, 21, pp. 155–173.

    Google Scholar 

  • Saltzman B., Hansen A.R. and K.A. Maasch, 1984. The Late Quaternary glaciations as the response of a three-component feedback system to earth-orbital forcing. Journal of Atmospheric Sciences, 41 (23), pp. 3380–3389.

    Article  Google Scholar 

  • Shackleton N.J. and N.G. Pisias, 1985. Atmospheric carbon dioxide, orbital forcing, and climate. In: E.T. Sundquist and W.S. Broecker (eds), The Carbon Cycle and Atmospheric CO 2 : natural variations Archean to Present, pp. 303–317, Geophys. Mono. 32. Am. Geophys. Union, Washington D.C.

    Google Scholar 

  • Shackleton N.J., Imbrie J. and N. Pisias, 1988. The evolution of oceanic oxygen-isotope variability in the North Atlantic over the past three million years. Phil. Trans. R. Soc. London, B318, pp. 679–688.

    Article  Google Scholar 

  • Shackleton N.J., Berger A. and W.R. Peltier, 1990. An alternative astronomical calibration of the lower Pleistocene timescale based on ODP site 677. Transactions of the Royal Society of Edinburgh: Earth Sciences, 81, pp. 251–261.

    Article  Google Scholar 

  • Short D.A., Mengel J.G., Crowley T.J., Hyde W.T. and G.R. North, 1991. Filtering of Milankovitch cycles by Earth’s geography. Quaternary Research, 35, pp. 157–173.

    Article  Google Scholar 

  • Stothers R.B., 1987. Do slow orbital periodicities appear in the record of Earth’s magnetic reversals ? Geophysical Research Letters, 14 (11), pp. 1087–1090.

    Article  Google Scholar 

  • Weedon G.P., 1985/1986. Hemipelagic shelf sedimentation and climatic cycles: the basal Jurassic (Blue Lias) of South Britain. Earth and Planetary Science Letters, 76, pp. 321–335.

    Google Scholar 

  • Wigley T.M.L., 1976. Spectral analysis: astronomical theory of climatic change. Nature, 264, pp. 629–631.

    Article  Google Scholar 

  • Woillard G.M., 1978. Grande Pile peat bog: A continuous pollen record for the last 140,000 years. Quaternary Research, 9, pp. 1–21.

    Article  Google Scholar 

  • Woolard E.W. and G.M. Clemence, 1966. Spherical Astronomy. Academic Press, New York, London.

    Google Scholar 

  • Yiou P., Genthon C., Ghil M., Jouzel J., Le Treut H., Barnola J.M., Lorius CI. and Y.N. Korotkevitch, 1991. High-frequency paleovariability in climate and CO2 levels from Vostok ice-core records. Journal of Geophysical Research, 96 n° B12, pp. 20, 365–20, 378.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berger, A., Loutre, M.F. (1994). Precession, Eccentricity, Obliquity, Insolation and Paleoclimates. In: Duplessy, JC., Spyridakis, MT. (eds) Long-Term Climatic Variations. NATO ASI Series, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79066-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79066-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79068-3

  • Online ISBN: 978-3-642-79066-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics