Skip to main content

Modelling the Ocean Circulation

  • Conference paper
Long-Term Climatic Variations

Part of the book series: NATO ASI Series ((ASII,volume 22))

Abstract

After a brief presentation of the ocean properties, the set of equations used in global ocean modelling is presented. Different technical choices can affect the solution: the system of coordinates, the grid, the numerical algorithms… The impact of physical choices is then presented. Present capacity of numerical modelling is discussed on two examples: a high resolution model of the tropical Pacific and a global circulation model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asselin R (1972) Frequency filter for time integration, Mont. Weath. Rev., vol. 100, N° 6, 487–490.

    Google Scholar 

  • Blanke B and P Delecluse (1993) Low frequency variability of the tropical Atlantic ocean

    Google Scholar 

  • simulated by a general circulation model with mixed layer physics, J. Phys. Oceanogr., 23, 1363–1388.

    Google Scholar 

  • Batteen M L and Y-J Han (1981) On the computational noise of finite-difference schemes used in ocean models, Tellus, 33, 387–396.

    Google Scholar 

  • Blanc T V (1987) Variation of bulk-derived surface flux, stability, and roughness results due to the use of different transfer coefficient schemes, J. Geophys. Res., 92, 3867–3876.

    Article  Google Scholar 

  • Bougeault P and T Lacarrère (1989) On the stability of the third-order turbulence closure for the modelling of the stratocumulus-topped boundary layer, J. Atmos. Res., 88, 4579–4592.

    Google Scholar 

  • Bryan F (1987) Parameter sensitivity of primitive equation ocean general circulation models, J. Phys. Oceanogr., 17, 970–985.

    Article  Google Scholar 

  • Bryan K (1969) A numerical method for the study of the circulation of the world ocean, J. Comput. Phys., 4 (3), 347–376.

    Article  Google Scholar 

  • Bryan K (1984) Accelerating the convergence to equilibrium of ocean-climate models, J. Phys. Oceanogr., 14, 666–673.

    Article  Google Scholar 

  • Bryan K (1986) Poleward buoyancy transport in the ocean and mesoscale eddies, J. Phys. Oceanogr., 16, 927–933.

    Article  Google Scholar 

  • Bryan K, S Manabe and R C Pacanowski (1975) A global ocean-atmosphere climate model. Part II. The oceanic circulation, J. Phys. Oceanogr., 5, 30–46.

    Google Scholar 

  • Bryden HL (1979) Poleward heat flux and conversion of available potential energy in the Drake Passage, J. Mar. Res., 37, 1–22.

    Google Scholar 

  • Bryden HL (1982) Sources of eddy energy in the Gulf Stream recirculation region, J. Mar. Res., 40 (4), 1047–1068.

    Google Scholar 

  • Chartier M (1985) Un modèle numérique tridimensionnel aux équations primitives de la circulation générale de l’océan, Thèse de l’université Pierre et Mairie Curie, CEA Report R-5372, 111 pages.

    Google Scholar 

  • Courant, Friedrichs and Lewy (1928) Über die partiellen differenzengleichungen der mathematischen physics, Math. Annalen, 100, 32–74.

    Google Scholar 

  • Dandin P (1991) Modélisation de l’océan Pacifique tropical. Rapport interne, LODYC. Fujio S and N Imasato (1990) Diagnostic calculation for circulation and water mass movement in the deep Pacific, J. Geophys. Res., 96, 759–774.

    Google Scholar 

  • Gaspar P, Y Gregoris and JM Lefevre (1990) A simple eddy-kinetic-energy model for simulations of the ocean vertical mixing: tests at station Papa and Long-Term Upper Ocean Study Site site, J. Geophys. Res., 95, 16179–16193.

    Google Scholar 

  • Gill A E (1982) Atmosphere and ocean dynamics. Academic Press, 662 pp.

    Google Scholar 

  • Haidvogel D B, J Wilkin and R Young (1991) A semi-spectral primitive equation ocean circulation model using vertical sigma and orthogonal curvilinear horizontal coordinates, J. Comput. Phys., 94, 151–185.

    Google Scholar 

  • Haney R L (1971) Surface thermal boundary condition for ocean circulation models, J. Phys. Oceanogr., 1, 241–248.

    Article  Google Scholar 

  • Hellerman S and M Rosenstein (1983) Normal monthly wind stress over the world ocean with error estimates, J. Phys. Oceanogr., 13, 1093–1104.

    Article  Google Scholar 

  • Kolmogorov A N (1942) The equation of turbulent motion in an incompressible fluid, Izv. Akad. Nauk. SSSR, Ser. Fiz., 6, 56–58.

    Google Scholar 

  • Levitus S (1982) Climatological atlas of the world ocean, NOAA Professional paper, 13, Washington D.C.

    Google Scholar 

  • McPhaden M J and M McCarty (1992) Mean seasonal cycle and interannual variations at 0, 110°W and 0, 140°W during 1980-1991. Tech. Rept, 95, ERL-PMEL, NOAA.

    Google Scholar 

  • Mellor G L and T Yamada (1982) Development of a turbulent closure model for geophysical fluid problems, Rev. Geophys and Space Phys., 20, 851–875.

    Article  Google Scholar 

  • Mesinger F and A Arakawa (1976) Numerical methods used in atmospheric models, GARP Publication, N° 17.

    Google Scholar 

  • Newell R E (1986) An approach towards equilibrium temperature in the tropical eastern Pacific, J. Phys. Oceanogr., 16, 1338–1342.

    Article  Google Scholar 

  • Oberhiiber J M (1988) An atlas based on the ‘COADS’ data set: The budget of heat, buoyancy and turbulent kinetic energy at the surface of the global ocean, Max-Planck-Institut fur Meteorologie, Hamburg, Rept 15.

    Google Scholar 

  • Oberhiiber J M (1990) Simulation of the Atlantic circulation with a coupled sea-ice-mixed layer- isopycnal General Circulation Model. Max-Planck-Institute fur Meteorologie, Rept 59.

    Google Scholar 

  • Pacanowski R and S G H Philander (1981) Parametrization of vertical mixing in numerical models of tropical ocean, J. Phys. Oceanogr., 11, 1443–1451.

    Article  Google Scholar 

  • Pedlosky J (1987) Geophysical Fluid Dynamics, Springer Verlag, 710 pp.

    Google Scholar 

  • Reverdin G, P Delecluse, C Levy, P Andrich, A Morliere and J M. Verstraete (1991) The near surface Atlantic in 1982–1984: results from a numerical simulation and a data analysis, Prog. Oceanogr., 27, 273–340.

    Google Scholar 

  • Sarmiento J L (1986) On the north and tropical Atlantic heat balance, J. Geophys. Res., 91, 11677–11698.

    Article  Google Scholar 

  • Sarmiento J L and K Bryan (1982) An ocean transport model for the North Atlantic, J. Geophys. Res., 87, 394–408.

    Article  Google Scholar 

  • Semtner A J Jr (1974) An oceanic general circulation model with bottom topography, Tech. Rep. 9, 99 pp., Dep. of Meteorol., Univ. of Calif., Los Angeles.

    Google Scholar 

  • Semtner A J Jr and R Chervin (1988) A simulation of the global ocean circulation with resolved eddies, J. Geophys. Res., 93, 15502–15552.

    Article  Google Scholar 

  • Stockdale T, D Anderson, M Davey, P Delecluse, A Kattenberg, Y Kitamura, M Latif and T Yamagata (1993) Intercomparison of tropical Pacific ocean GCM’s. WMO Rep.

    Google Scholar 

  • Sverdrup H U (1947) Wind-driven currents in a baroclinic ocean: with application to the equatorial currents in the eastern Pacific, Proceedings of the National Academy of Science, 33, 318–329.

    Article  Google Scholar 

  • Toggweiler J R, K Dixon and K Bryan (1989) Simulation of radiocarbon in a coarse-resolution world ocean model, 1, Steady state prebomb distributions, J. Geophys. Res., 94, 8217–8242.

    Google Scholar 

  • Toggweiler J R, K Dixon and K Bryan (1989) Simulation of radiocarbon in a coarse-resolution world ocean model, 2, Distributions of bomb-produced carbon 14, J. Geophys. Res., 94, 8243–8264.

    Google Scholar 

  • Unesco (1983) Algorithms for computation of fundamental property of sea water, UNESCO Tech. Paper in Marine Science 44, 53 pp.

    Google Scholar 

  • Wajsowicz R C (1986) Free planetary waves in finite-difference numerical models, J. Phys. Oceanogr., 116, 1–17.

    Google Scholar 

  • Wyrtki K (1981) An estimate of equatorial upwelling in the Pacific, J. Phys. Oceanogr., 11, 1205–1214.

    Article  Google Scholar 

  • Yin F L and IY Fung (1991) Net Diffusivity in General Circulation Models With Nonuniform Grids, J. Geophys. Res., 96, C6, 10773–10776.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Delecluse, P. (1994). Modelling the Ocean Circulation. In: Duplessy, JC., Spyridakis, MT. (eds) Long-Term Climatic Variations. NATO ASI Series, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79066-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79066-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79068-3

  • Online ISBN: 978-3-642-79066-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics