Modelling the Ocean Circulation

  • Pascale Delecluse
Part of the NATO ASI Series book series (volume 22)


After a brief presentation of the ocean properties, the set of equations used in global ocean modelling is presented. Different technical choices can affect the solution: the system of coordinates, the grid, the numerical algorithms… The impact of physical choices is then presented. Present capacity of numerical modelling is discussed on two examples: a high resolution model of the tropical Pacific and a global circulation model.


Turbulent Kinetic Energy Wind Stress Ocean Model Ocean Circulation Global Ocean 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asselin R (1972) Frequency filter for time integration, Mont. Weath. Rev., vol. 100, N° 6, 487–490.Google Scholar
  2. Blanke B and P Delecluse (1993) Low frequency variability of the tropical Atlantic oceanGoogle Scholar
  3. simulated by a general circulation model with mixed layer physics, J. Phys. Oceanogr., 23, 1363–1388.Google Scholar
  4. Batteen M L and Y-J Han (1981) On the computational noise of finite-difference schemes used in ocean models, Tellus, 33, 387–396.Google Scholar
  5. Blanc T V (1987) Variation of bulk-derived surface flux, stability, and roughness results due to the use of different transfer coefficient schemes, J. Geophys. Res., 92, 3867–3876.CrossRefGoogle Scholar
  6. Bougeault P and T Lacarrère (1989) On the stability of the third-order turbulence closure for the modelling of the stratocumulus-topped boundary layer, J. Atmos. Res., 88, 4579–4592.Google Scholar
  7. Bryan F (1987) Parameter sensitivity of primitive equation ocean general circulation models, J. Phys. Oceanogr., 17, 970–985.CrossRefGoogle Scholar
  8. Bryan K (1969) A numerical method for the study of the circulation of the world ocean, J. Comput. Phys., 4 (3), 347–376.CrossRefGoogle Scholar
  9. Bryan K (1984) Accelerating the convergence to equilibrium of ocean-climate models, J. Phys. Oceanogr., 14, 666–673.CrossRefGoogle Scholar
  10. Bryan K (1986) Poleward buoyancy transport in the ocean and mesoscale eddies, J. Phys. Oceanogr., 16, 927–933.CrossRefGoogle Scholar
  11. Bryan K, S Manabe and R C Pacanowski (1975) A global ocean-atmosphere climate model. Part II. The oceanic circulation, J. Phys. Oceanogr., 5, 30–46.Google Scholar
  12. Bryden HL (1979) Poleward heat flux and conversion of available potential energy in the Drake Passage, J. Mar. Res., 37, 1–22.Google Scholar
  13. Bryden HL (1982) Sources of eddy energy in the Gulf Stream recirculation region, J. Mar. Res., 40 (4), 1047–1068.Google Scholar
  14. Chartier M (1985) Un modèle numérique tridimensionnel aux équations primitives de la circulation générale de l’océan, Thèse de l’université Pierre et Mairie Curie, CEA Report R-5372, 111 pages.Google Scholar
  15. Courant, Friedrichs and Lewy (1928) Über die partiellen differenzengleichungen der mathematischen physics, Math. Annalen, 100, 32–74.Google Scholar
  16. Dandin P (1991) Modélisation de l’océan Pacifique tropical. Rapport interne, LODYC. Fujio S and N Imasato (1990) Diagnostic calculation for circulation and water mass movement in the deep Pacific, J. Geophys. Res., 96, 759–774.Google Scholar
  17. Gaspar P, Y Gregoris and JM Lefevre (1990) A simple eddy-kinetic-energy model for simulations of the ocean vertical mixing: tests at station Papa and Long-Term Upper Ocean Study Site site, J. Geophys. Res., 95, 16179–16193.Google Scholar
  18. Gill A E (1982) Atmosphere and ocean dynamics. Academic Press, 662 pp.Google Scholar
  19. Haidvogel D B, J Wilkin and R Young (1991) A semi-spectral primitive equation ocean circulation model using vertical sigma and orthogonal curvilinear horizontal coordinates, J. Comput. Phys., 94, 151–185.Google Scholar
  20. Haney R L (1971) Surface thermal boundary condition for ocean circulation models, J. Phys. Oceanogr., 1, 241–248.CrossRefGoogle Scholar
  21. Hellerman S and M Rosenstein (1983) Normal monthly wind stress over the world ocean with error estimates, J. Phys. Oceanogr., 13, 1093–1104.CrossRefGoogle Scholar
  22. Kolmogorov A N (1942) The equation of turbulent motion in an incompressible fluid, Izv. Akad. Nauk. SSSR, Ser. Fiz., 6, 56–58.Google Scholar
  23. Levitus S (1982) Climatological atlas of the world ocean, NOAA Professional paper, 13, Washington D.C.Google Scholar
  24. McPhaden M J and M McCarty (1992) Mean seasonal cycle and interannual variations at 0, 110°W and 0, 140°W during 1980-1991. Tech. Rept, 95, ERL-PMEL, NOAA.Google Scholar
  25. Mellor G L and T Yamada (1982) Development of a turbulent closure model for geophysical fluid problems, Rev. Geophys and Space Phys., 20, 851–875.CrossRefGoogle Scholar
  26. Mesinger F and A Arakawa (1976) Numerical methods used in atmospheric models, GARP Publication, N° 17.Google Scholar
  27. Newell R E (1986) An approach towards equilibrium temperature in the tropical eastern Pacific, J. Phys. Oceanogr., 16, 1338–1342.CrossRefGoogle Scholar
  28. Oberhiiber J M (1988) An atlas based on the ‘COADS’ data set: The budget of heat, buoyancy and turbulent kinetic energy at the surface of the global ocean, Max-Planck-Institut fur Meteorologie, Hamburg, Rept 15.Google Scholar
  29. Oberhiiber J M (1990) Simulation of the Atlantic circulation with a coupled sea-ice-mixed layer- isopycnal General Circulation Model. Max-Planck-Institute fur Meteorologie, Rept 59.Google Scholar
  30. Pacanowski R and S G H Philander (1981) Parametrization of vertical mixing in numerical models of tropical ocean, J. Phys. Oceanogr., 11, 1443–1451.CrossRefGoogle Scholar
  31. Pedlosky J (1987) Geophysical Fluid Dynamics, Springer Verlag, 710 pp.Google Scholar
  32. Reverdin G, P Delecluse, C Levy, P Andrich, A Morliere and J M. Verstraete (1991) The near surface Atlantic in 1982–1984: results from a numerical simulation and a data analysis, Prog. Oceanogr., 27, 273–340.Google Scholar
  33. Sarmiento J L (1986) On the north and tropical Atlantic heat balance, J. Geophys. Res., 91, 11677–11698.CrossRefGoogle Scholar
  34. Sarmiento J L and K Bryan (1982) An ocean transport model for the North Atlantic, J. Geophys. Res., 87, 394–408.CrossRefGoogle Scholar
  35. Semtner A J Jr (1974) An oceanic general circulation model with bottom topography, Tech. Rep. 9, 99 pp., Dep. of Meteorol., Univ. of Calif., Los Angeles.Google Scholar
  36. Semtner A J Jr and R Chervin (1988) A simulation of the global ocean circulation with resolved eddies, J. Geophys. Res., 93, 15502–15552.CrossRefGoogle Scholar
  37. Stockdale T, D Anderson, M Davey, P Delecluse, A Kattenberg, Y Kitamura, M Latif and T Yamagata (1993) Intercomparison of tropical Pacific ocean GCM’s. WMO Rep.Google Scholar
  38. Sverdrup H U (1947) Wind-driven currents in a baroclinic ocean: with application to the equatorial currents in the eastern Pacific, Proceedings of the National Academy of Science, 33, 318–329.CrossRefGoogle Scholar
  39. Toggweiler J R, K Dixon and K Bryan (1989) Simulation of radiocarbon in a coarse-resolution world ocean model, 1, Steady state prebomb distributions, J. Geophys. Res., 94, 8217–8242.Google Scholar
  40. Toggweiler J R, K Dixon and K Bryan (1989) Simulation of radiocarbon in a coarse-resolution world ocean model, 2, Distributions of bomb-produced carbon 14, J. Geophys. Res., 94, 8243–8264.Google Scholar
  41. Unesco (1983) Algorithms for computation of fundamental property of sea water, UNESCO Tech. Paper in Marine Science 44, 53 pp.Google Scholar
  42. Wajsowicz R C (1986) Free planetary waves in finite-difference numerical models, J. Phys. Oceanogr., 116, 1–17.Google Scholar
  43. Wyrtki K (1981) An estimate of equatorial upwelling in the Pacific, J. Phys. Oceanogr., 11, 1205–1214.CrossRefGoogle Scholar
  44. Yin F L and IY Fung (1991) Net Diffusivity in General Circulation Models With Nonuniform Grids, J. Geophys. Res., 96, C6, 10773–10776.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Pascale Delecluse
    • 1
  1. 1.LODYC - UMR121 (CNRS-UPMC-ORSTOM) Université Pierre et Marie CurieParis - Cedex 05France

Personalised recommendations