Skip to main content

Mid-Latitude Depressions during the Last Ice-Age

  • Conference paper
Long-Term Climatic Variations

Part of the book series: NATO ASI Series ((ASII,volume 22))

Abstract

A GCM is used to investigate the distribution, strength and characteristics of mid-latitude depressions during the last glacial maximum (LGM) and to understand their role in the formation and maintenance of continental ice sheets. The model results show that during the northern hemisphere winter, there is an increase in the storm track activity. This results in significant changes in rainfall, and accumulation on the edge of the ice sheet. However in summer, there is net melting at the ice sheet edges, but accumulation at high altitude.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Betts A.K. and M.J. Miller, 1986: A new convective adjustment scheme. Part 1: Observational and theoretical basis. Quart. J. Roy. Met. Soc. 112, 677–691.

    Google Scholar 

  • Broccoli, A.J., and S. Manabe, 1987: The influence of continental ice, atmospheric CO2 and land albedo on the climate of the last glacial maximum. Clim. Dyn. 1, 87–99.

    Article  Google Scholar 

  • Gallee, H., J.P. Van Ypersele, T. Fichefet, C. Tricot and A. Berger, 1991: Simulation of the last glagial cycle by a coupled sectorially averaged climate -ice sheet model I: The climate model. J. Geophys. Res. 96, 13139–13161.

    Article  Google Scholar 

  • Gates, W.L., 1976: The numerical simulation of ice age climate with a global general circulation model. J. Atmos. Sci. 33, 1844–1873.

    Article  Google Scholar 

  • Hoskins, B.J., H.H. Hsu, I.N. James, M. Masutani, P.D. Sardeshmukh and G.H. White, 1989: Diagnostics of the global atmospheric circulation. WRCP report 27.

    Google Scholar 

  • Hoskins, B.J. and P.J. Valdes, 1990: On the existence of storm tracks. J. Atmos. Sci. 47, 1854–1864.

    Article  Google Scholar 

  • James, I.N. and D.L.T. Anderson, 1983: The seasonal mean flow and distribution of large scale weather systems in the southern hemisphere: The effects of moisture transports. Quart. J. Roy. Met. Soc. 110, 943–966.

    Article  Google Scholar 

  • Joussaume, S., 1991: Paleoclimatic tracers: An investigation using an atmospheric general circulation model under ice age conditions. Part 1: Destert dust. J. Geophys. Res. In press.

    Google Scholar 

  • Kuhle, M., 1987: Subtropical mountain and highland glaciation as ice age triggers and the waning of the glacial periods in the Pleistocene. Geo Journal 14, 393–421.

    Google Scholar 

  • Kutzbach, J.E., 1987: Model simulations of the climatic patterns during the déglaciation of North America. In North America and the adjacent oceans during the last déglaciation. W.F. Ruddiman and H.E. Wright, Eds. The Geology of North America, Geol. Soc. Am. v. K-3, Boulder, Col., pp 425–446.

    Google Scholar 

  • Kutzbach, J.E. and P.J. Geutter, 1986: The influence of changing orbital parameters and surface boundary conditions on climate simulations for the past 18000 years. J. Atmos. Sci. 43, 1726–1759.

    Article  Google Scholar 

  • Lautenschlager, M. and K. Herterich, 1990: Atmospheric response to ice age conditions: Climatology near the Earth’s surface. J. Geophys. Res. 95, 22547–22557.

    Article  Google Scholar 

  • Manabe, S. and A.J. Broccoli, 1985: The influence of continental ice sheets on the climate of an ice age. J. Geophys. Res. 90, 2167–2190.

    Article  Google Scholar 

  • Morcrette, J-J, 1990: Impact of changes to radiative transfer parameterisations plus cloud optical properties in the ECMWF model. Mon. Wea. Rev. 118, 847–873.

    Article  Google Scholar 

  • Palmer, T.N., G.J. Shutts and R. Swinbank, 1986: Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave parameterisation. Quart., J. Roy. Met. Soc. 112, 1001–1040.

    Article  Google Scholar 

  • Peltier, W.R. and W. Hyde, 1984: A model of the ice age cycle. In Milankovitch and Climate, understanding the response to orbital forcing Berger, Imbrie, Hays, Kukla and Saltzman Eds. NATO ASI Series C vol. 126, Reidel Publ. Company, Holland, 895 pp.

    Google Scholar 

  • Pollard, D., 1984: Some ice-age aspects of a calving ice sheet model. In Milankovitch and Climate, understanding the response to orbital forcing Berger, Imbrie, Hays, Kukla and Saltzman Eds. NATO ASI Series C vol. 126, Reidel Publ. Company, Holland, 895 pp.

    Google Scholar 

  • Rind, D., 1987: Components of the ice age circulation. J Geophys. Res., 92, 4241–4281.

    Article  Google Scholar 

  • Rind, D., and D. Peteet, 1985: Terrestrial conditions at the last glacial maximum and CLIMAP sea-surface temperature estimates: Are they consistent ? Quaternary Res. 24, 1–22.

    Article  Google Scholar 

  • Saltzman, B. and M.Y. Verbitsky, 1992: Asthenospheric ice-load effects in a global dynamical- system model of the Pleistocene climate. Climate Dynamics 8, 1–11.

    Article  Google Scholar 

  • Schneider, S.H., and S.L. Thompson, 1979: Ice ages and orbital variations: Some simple theory and modeling. Quaternary Res. 12, 188–203.

    Article  Google Scholar 

  • Schutz, C. and W.L. Gates, 1971: Global climatic data for surface, 800 mb, 400 mb: January. Rand, Santa Monica, R-1029-ARPA, 180 pp.

    Google Scholar 

  • Shinn, R.A., and E.J. Barron, 1989: Climate Sensitivity to Continental Ice Sheet Size and Configuration. J. Climate 2, 1517–1537.

    Article  Google Scholar 

  • Slingo, J.M., 1987: The development and verification of a cloud prediction scheme for the ECMWF model. Quart. J. Roy. Met. Soc. 113, 899–927.

    Article  Google Scholar 

  • Slingo, J.M. and M. Blackburn, 1992: Implementation of the Betts/Miller convective adjustment scheme in the UGCM. U.K. Universities Global Atmospheric Modelling Programme technical report 25.

    Google Scholar 

  • Suarez, M., and I.M. Held, 1979: The sensitivity of an energy balance climate model to variations in the orbital parameters. J. Geophys. Res. 84, 4825–4836.

    Article  Google Scholar 

  • Thuburn, J., 1993; Use of a flux limited scheme for vertical advection in a GCM. Quart. J. Roy. Met. Soc. 119, 469–487.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Valdes, P.J., Hall, N.M.J. (1994). Mid-Latitude Depressions during the Last Ice-Age. In: Duplessy, JC., Spyridakis, MT. (eds) Long-Term Climatic Variations. NATO ASI Series, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79066-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79066-9_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79068-3

  • Online ISBN: 978-3-642-79066-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics