Statistical Analyses of Biospherical Variability

  • J. Guiot
Part of the NATO ASI Series book series (volume 22)


Climate and vegetation are interdependent. Climate types have been often used to define vegetation types and to draw maps of potential vegetation (Walter and Box, 1976; Mathews, 1983). Certain vegetation features have also often been used to recognize climate types: for example, the olive tree defines the northern limit for the mediterranean climate (Emberger, 1955).


Last Glacial Maximum Pollen Data Atmospheric General Circulation Model Moisture Index Proxy Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adam, D.P., and West, G.J. (1983) Temperature and precipitation estimates through the last glacial cycle from Clear Lake, California, pollen data, Science, 219: 168–170.Google Scholar
  2. Adams, J.M, Faure, H., Faure-Denard, L., McGlade, J.M., Woodward, F.I. (1990) Increases in terrestrial carbon storage from the Last Glacial Maximum to the Present. Nature 348: 711–714.CrossRefGoogle Scholar
  3. Alexandre, P. (1987) “Le climat en Europe au Moyen-Age”. Ecole des Hautes Etudes en Sciences Sociales, Paris, 825 p.Google Scholar
  4. Atkinson, T.C., Briffa, K.R., Coope, G.R., Joachim, M.J., and Perry, D.W. (1986) Climatic calibration of coleopteran data. In Berglund, B.E. (ed): Handbook of Holocene Palaeoecology and Palaeohydrology, Wiley, Chichester.Google Scholar
  5. Atkinson, T. C. Briffa, K. R. Coope, G. R. (1987) Seasonal temperatures in Britain during the past 22,000 years, reconstructed using beetle remains. Nature, 325: 587–592.Google Scholar
  6. Barnola, D. Raynaud, Y.S. Korotkevitch, and C. Lorius (1987). Vostok ice core: a 160,000 year record of the atmospheric C02. Nature 329: 408–414.CrossRefGoogle Scholar
  7. Bartlein, P.J., Prentice, I.C. (1986) Climatic response surfaces from pollen data for some eastern North American taxa. Journal of Biogeography, 13: 35–57.CrossRefGoogle Scholar
  8. Behre, K.-E. (1988) The role of man in European vegetation history. In “Vegetation History”, B. Huntley and T. Webb III, (Eds.) Kluwer, Dordrecht, 633–672.CrossRefGoogle Scholar
  9. Becker, B., Kromer, B., and Trimborn, P. (1991) A stable-isotope tree-ring timescale of the Late Glacial/Holocene boundary. Nature, 353: 647–649.CrossRefGoogle Scholar
  10. Becker, M. (1987) Bilan de santé actuel et rétrospectif du sapin dans les Vosges. Etude écologique et dendrochronologique. Ann. Sei. Forestières, 43: 379–402.Google Scholar
  11. Birks, H.J.B. (1981) The use of pollen analysis in the reconstruction of past climates: a review, in Wigley T. et al. (eds): Climate and History. Cambridge University Press, Cambridge, 111–138.Google Scholar
  12. Bradley, R. and Jones, P.D., eds (1992) “The climate since 1500”. Routledge, London, 679 p.Google Scholar
  13. Briffa, K.R., Jones, P.D. and Schweingruber, F.H. (1988) Summer temperature patterns over Europe: a reconstruction from 1750 A.D. based on maximum latewood density indices of conifers. Quat. Res. 30: 36–52.Google Scholar
  14. Box, E.O. (1981) Macroclimate and plant forms: an introduction to predictive modelling in phytogeography. Junk, The Hague.Google Scholar
  15. CLIMAP Projects Members (1981). Geol. Soc. Am. Map Chart Ser. MC-36.Google Scholar
  16. Cook, E.R. and Kairiukstis, L.A. (1990) Methods of Dendrochronology: Application in the Environmental Sciences, Kluwer Academic Press and IIASA, Dordrecht.Google Scholar
  17. Coope, G.R. (1977) Fossil coleopteran assemblges as sensitive indicators of climatic changes during the Devensian ( Last) cold stage. Proeedings of the Philosophical Transactions of the Royal Society of London, B 280: 313–340.Google Scholar
  18. Coope, G.R. (1986) Coleoptera analysis. Handbook of Holocene Palaeecology and Palaeohydrology, Berglund (ed), Wiley, Chichester, 775–794.Google Scholar
  19. Dansgaard, W., Johnsen, S.J., Clausen, H.B. and Langway, C.C. (1971) Climatic record revealed by the Camp Century ice core. In: Turekian K.K. (ed): The Late Cenozoic Glacial Ages, New Haven, Yale University Press.Google Scholar
  20. De Vernal, A., Guiot, J., and Turon, J.L., submitted. Late and Postglacial paleoenvironments of the Gulf of St.Lawrence: marine and terrestrial palynological evidence. Géographie Physique et Quaternaire.Google Scholar
  21. Douglas, A.E. (1914) A method of estimating rainfall by the growth of trees. In “Climatic factor”, L. Hunlington (ed), Carnegie Inst, of Washington Publ., 192: 101–122.Google Scholar
  22. Duplessy, J.C. et al. (1988) Paleoceanography 3: 343–360.CrossRefGoogle Scholar
  23. Elovicheva, Ya., Bogdel, I. (1987) Reconstruction of paleoclimate and vegetation of the Byelorussian holocene using bog and lake deposit data, Paleohydrology of the temperate zone III, Mines and Lakes, Ac. Sc. Estonian SSR, Inst. Geology, 152–166.Google Scholar
  24. Emanuel, W.R., Shugart, H.H., and Stevenson, M.P. (1985) Climatic change and the broad-scale distribution of terrestrial ecosystem complexes. Climatic Change, 7: 29–43.CrossRefGoogle Scholar
  25. Emberger, L. (1955) Une classification biogéographique des climats. Rev. Trav. Lab. Gèo. Zoo., Fac. Sci. Montpellier, sér. bot. 7: 3–43.Google Scholar
  26. FAO/UNESCO (1974) Soil map of the world 1:5,000,000. FAO, Paris.Google Scholar
  27. Friedlingstein, C. Delire, J.F. Muller, J.C. Gérard (1992). The climate induced variation of the continental biosphere: a model simulation of the Last Glacial Maximum. Geophys. Res. Lett. 19: 897–900.Google Scholar
  28. Fritts, H.C. Biasing, T.J., Hayden, B.P. and Kutzbach, J.E. (1971) Multivariate techniques for specifying tree-growth and climate relationships and for reconstructing anomalies in paleoclimate. J. Appi. Meteorology, 10: 845–864.Google Scholar
  29. Fritts, H.C. (1976) Tree Rings and Climate. Academic Press, London, 567 pp.Google Scholar
  30. Guiot, J. (1985) The extrapolation of recent climatological series with spectral canonical regression. J. Climatology, 5: 325–335.CrossRefGoogle Scholar
  31. Guiot, J. (1989) Method of calibration and comparison of methods. In: Cook E.R. and Kairiukstis L.A. (eds) Methods of Dendrochronology, Kluwer Academic Pub. & NASA, 165-178 and 185–193.Google Scholar
  32. Guiot, J., Beaulieu, J.L. de, Pons, A., and Reille, M. (1989) A 140,000-year climatic reconstruction from two European pollen records. Nature, 338: 309–313.CrossRefGoogle Scholar
  33. Guiot, J., Reille, M., Beaulieu, J.L. de, and Pons, A. (1992) Calibration of the climatic signal in a new pollen sequence from La Grande Pile. Climate Dynamics, 6: 259–264.CrossRefGoogle Scholar
  34. Guiot, J. (1992a) The combination of historical documents and biological data in the reconstruction of climate variations in space and in time. Palàoklimaforschung/Paleoclimate Research, 7, Special Issue: ESF Project “European Paleoclimate and Man” 2, B. Frenzel, C. Pfister & B. Glàser (eds).Google Scholar
  35. Guiot, J. (1992b) The climat of central Canada and Southwestern Europa reconstructed by contining various types of proxy data: a detailed analysis of the 1810-1820 period. The year without a summer ? world climate in 1816, C.R. Harington (ed), Canadian Museum of Nature, Ottawa, 291–308.Google Scholar
  36. Hansen J. et al., 1984. Geophys. Monogr. ser. (M. Ewing Symp. 5 ), 29: 130–163.Google Scholar
  37. Guiot, J., Sandy P., Harrison, S.P. and Prentice, I.C. (1993) Reconstruction of Holocene precipitation patterns in Europe using pollen and lake-level data. Quat. Res. 40: 139–149.CrossRefGoogle Scholar
  38. Hansen, J., et al. (1984) Geophysical Monographies series (M. Ewing Symp. 5 ) 29: 130–163.Google Scholar
  39. Harrison, S.P., Prentice, I.C., and Guiot, J. (1993) Climatic controls of Holocene lake-level changes in Europe. Climate Dynamics (in press)Google Scholar
  40. Holdridge, L.R. (1947) Determination of World plant formations from simple climatic data. Science, 105: 367–368.CrossRefGoogle Scholar
  41. Huntley, B. (1988) Glacial and Holocene vegetation history: Europe. In “Vegetation History” ( B. Huntley and T. Webb III, Eds.), pp. 341–384. Kluwer, Dordrecht.CrossRefGoogle Scholar
  42. Huntley, B. (1990a): European vegetation history: palaeovegetation maps from pollen data - 13 000 yr B.P. to present. J. Quat. Sci. 5: 103–122.Google Scholar
  43. Huntley, B. (1990b) Dissimilarity mapping between fossil and contemporary pollen spectra in Europe for the past 13,000 years. Quat. Res. 33: 360–376.Google Scholar
  44. Huntley, B., and Prentice, I.C. (1988): July temperatures in Europe from pollen data, 6000 years before present. Science 241: 687–690.CrossRefGoogle Scholar
  45. Huntley, B., Bartlein, P.J., and I.C. Prentice (1989) Climatic control of the distribution and abundance of beech in Europe and North America. J. Biogeography 16: 551–560.CrossRefGoogle Scholar
  46. Imbrie, J., and Kipp, N.G. (1971) A new micropaleontological method for quantitative paleoclimatology: application to a late Pleistocene Caribbean core. In K.K. Turekian (ed): The Late CenozoTc Glacial Ages, Yale University Press, New Haven, 71–181.Google Scholar
  47. Iversen, J. (1944) Viscum, Hedera and Ilex as climate indicators. A contribution to the study of the post-glacial temperature climate. Geologiska Foreningens i Stockholm Forhandlingar, 66: 463–483.Google Scholar
  48. Jones, P.D., Raper, S.C.B., Santer, B., Cherry, B.S.G., Goodess, C., Kelly, P.M., Wigley, T.M.L., Bradley, R.S. and Diaz, H.F. (1985) A gridpoint surface air temperature data set for the northern hemisphere. U.S. Dept. of Energy, Washington, TR022.Google Scholar
  49. Lautenschlager, M. and Herterich, K. (1990) J. Geophys. Res., 95: 547.CrossRefGoogle Scholar
  50. Leemans, R., and Cramer, W. (1990) The NASA database for mean monthly values of temperature, precipitation and cloudiness of a global terrestrial grid. WP-90- 41, NASA, Laxenburg.Google Scholar
  51. Lieth, H. (1972) Modelling the primary productivity of the world. Nature and Resource, 8: 5–10.Google Scholar
  52. Leuenberger, M., U. Siegenthaler, C. Langway, (1992) Carbon isotope composition of atmospheric C02 during the last ice age from an Antarctic ice core. Nature 357, 488–490.CrossRefGoogle Scholar
  53. Lotter, A.F. and Kienast, F., 1992. Validation of a forest succession model by means of annually laminated sediments. Geol. Surv. Findland, Spec. pap. 14: 25–31.Google Scholar
  54. Lozek, V. (1964) Quatarmollusken der Tschechoslowakei. Rozpr. Ustred. ustavu. Geol. 31: 1–374.Google Scholar
  55. Marino, M.B. McElroy, R.J. Salawitch, and W.G. Spaulding (1992) Nature, 357: 461–465.Google Scholar
  56. Matthews, E. (1983) Global vegetation and land use: new high-resolution data bases for climate studies. J. Climate Applied meteorology, 22: 474–487.CrossRefGoogle Scholar
  57. Olson, J.S., J.A. Watts, and L.J. Allison (1985) Major world ecosystem complexes ranked by carbon in live vegetation: A Database. NPD-017, Carbon Dioxide Information Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee.Google Scholar
  58. Parker, M.L., Hennoch, W.S.E. (1971) The use of Engelman Spruce late-wood density for dendrochronological purposes. Can. J. Forest Research, 1: 90–98.CrossRefGoogle Scholar
  59. Pichon, J.J., Labeyrie, L.D., Bareille, G., Labracherie, M., Duprat, J., and Jouzel, J. (1992) Surface water temperature changes in the high latitudes of the southern hemisphere over the last glacial-interglacial cycle. Paleooceanography, 7: 289–318.CrossRefGoogle Scholar
  60. Piggott, C.D. and Huntley, J.P. (1981). Factors controlling the distribution of Tilia cordata at the northern limits of its geographical range. I. Distribution in northwest England. New Phytologist 87: 817–839.CrossRefGoogle Scholar
  61. Post, W.M., Emanuel, W.R., Zinke, P.J., and Sangenberger, A.G. (1982) Soil carbon pool and World life zones. Nature, 298: 156–159.CrossRefGoogle Scholar
  62. Ponel, P. and Coope, G.R., 1990. Late glacial and early Flandrian Coleoptera from La Taphanel, Massif central, France: climatic and ecological implications. J. Quat. Sci., 5: 235–249.CrossRefGoogle Scholar
  63. Prentice, I.C. (1986) Multivariate methods for data analysis. Handbook of Holocene Palaeecology and Palaeohydrology. In Berglund (ed), Wiley, Chichester, 775–794.Google Scholar
  64. Prentice, I.C. (1980) Multidimensional scaling as a research tool in quaternary palynology, a review of theory and methods. Rev. Paleobotany Palynology, 31: 71–104.Google Scholar
  65. Prentice, I.C., et al. (1989) Developing a global vegetation dynamics model: results of an NASA summer workshop. NASA, Laxenburg, RR-89-7.Google Scholar
  66. Prentice, I.C., Sykes, M.T., Lautenschlager, M., Harrison, S.P., Denissenko, O., and Bartlein, P.J. (submitted). Modelling global vegetation patterns and terrestrial carbon storage at the last glacial maximum. Global and Planetary Changes.Google Scholar
  67. Prentice, I.C., Bartlein, P.J., and Webb, T. Ill (1991) Vegetation and climate change in eastern North America since the last glacial maximum. Ecology 72: 2038–2056.CrossRefGoogle Scholar
  68. Prentice, I.C., Cramer, W., Harrison, S.P., Leemans, R., Monserud, R.A., and Solomon, A.M. (1992) A global biome model based on plant physiology and dominance, soil properties and climate. Journal of Biogeography 19: 117–134.CrossRefGoogle Scholar
  69. Prentice, I.C., Sykes, M.T., and Cramer, W. (in press). A simulation model for the transient effects of climate change on forest landscapes. Ecological Modelling.Google Scholar
  70. Prentice, K.C., and I.Y. Fung (1990) The sensitivity of terrestrial carbon storage to climate change. Nature, 346: 48–51.CrossRefGoogle Scholar
  71. Puissegur, J.J. (1976) Mollusques continentaux quaternaires de Bourgogne. Significations stratigraphiques et climatiques. Rapports avec d’autres faunes boréales de France. Mémoire géol. Univ. Dijon, 3: 1–241.Google Scholar
  72. Rousseau, D.D. (1987) Paleoclimatology of the Achenheim series (middle and upper Pleistocene, Alsace, France): a malacological analysis. Palaeogeography, Palaeoclimatology, Palaeoecology. 59: 293–314.Google Scholar
  73. Rousseau, D.D. (1991) Climatic transfer function from Quaternay molluscs in European loess deposits. Quaternary Research 36: 195–209.CrossRefGoogle Scholar
  74. Roux, M., Servant-Vildary, S., and Servant M. (1991) Inferred ionic composition and salinity of a Bolivian Quaternary lake, as estimated from fossil diatoms in the sediments. Hydrobiologia, 1: 1–18.Google Scholar
  75. Sachs, H.M., Webb III, T., Clark, D.R. (1977) Paleoecological transfer functions. Ann. Rev. Earth Planet. Sci., 5: 159–178.CrossRefGoogle Scholar
  76. Schwarz-Zanetti, W., Pfister, C., Schwarz-Zanetti, G., and Schüle, H. (1992) The EURO-CLIMHIST database - a tool for reconstructing the climate of Europe in the pre-instrumental period from high resolution proxy data. Paläoklimaforschung/Paleoclimate Research, 7, Special Issue: ESF Project “European Paleoclimate and Man” 2, B. Frenzel, C. Pfister & B. Gläser (eds).Google Scholar
  77. Schweingrüber, F.H., Fritts, H.C., Bräker, O.U., Drew, L.G., and Schaer, E. (1978) The X-ray technique as applied to dendroclimatology. Tree-Ring Bulletin, 38: 61–91.Google Scholar
  78. Schweingrüber, F.H., Braker, O.U. and Schär, E. (1979) Dendroclimatic studies on conifers from Central Europe and Great Britain. Boreas 8: 427–452.CrossRefGoogle Scholar
  79. Schweingrüber, F.H. (1988) Climatic information for the past hundred years in width and density of conifer growth rings. Lecture Notes in Earth Sciences 16, Springler-Verlag, Berlin, 35–55.Google Scholar
  80. Seret, G., Guiot, J., Wansard, G., Beaulieu, J.L. de and Reille, M. (1992) Tentative paleoclimatic reconstruction linking pollen and sedimentology in La Grande Pile ( Vosges, France). Quat. Sei. Rev., 11: 425–430.Google Scholar
  81. Serre-Bachet, F. (1989) Tree-rings in the Mediterranean area. Paläoklimaforschung/Paleoclimate Research, 7, Special Issue: ESF Project “European Paleoclimate and Man” 2, B. Frenzel, C. Pfister & B. Gläser (eds).Google Scholar
  82. Serre-Bachet, F., Guiot, J., and Tessier, L. (1992): Dendroclimatic evidence from SW Europe and N.W Africa. In: Bradley and Jones (eds): Climate since 1500 A.D., London, Routledge, 349–365.Google Scholar
  83. Shackleton, N.J. (1977) Carbon-13 in Uvigerina: tropical rainforest history and the Equatorial Pacific carbonate dissolution cycles. In The Fate of Fossil Fuel CO2 in the Oceans, N.R. Anderson, A. Malahoff, Eds, New York, Plenum, 401–428.Google Scholar
  84. Shugart, H.H. (1984) A theory of forest dynamics, Springer-Verlag, New-York.CrossRefGoogle Scholar
  85. Sparks B.W. (1961) The ecological interpretation of Quaternary non-marine mollusca. proc. Linnean Soc. London 172: 71–80.Google Scholar
  86. Ter Braak, C.J.F., and Prentice, I.C. (1988) A theory of gradient analysis. Advances in Ecological Research 18, Academic Press, London, 271–317.Google Scholar
  87. Tessier, L., Serre-Bachet, F., et Guiot, J. (1990) Pollution fluorée et croissance raiale des conifères en Maurienne ( Savoie, France). Ann. Sci. Forestières, 47: 309–323.CrossRefGoogle Scholar
  88. Till, C. and Guiot, J. (1990) Reconstruction of precipitation in Morocco since AD. 1100 based on Cedrus Atlantica tree-ring widths. Quat. Res., 33: 337–351.CrossRefGoogle Scholar
  89. Velichko, A.A., B. Frenzel, M. Pecsi, Eds, Atlas of Paleoclimates an Paleoenvirnments of the Northern Hemisphere (Gustav Fischer Verlag, Stuttgart, 1991 ).Google Scholar
  90. Van Campo, E., Guiot, J., and Peng Changhui (submitted) The database reappraisal of the terrestrial carbon budget at the Last Glacial Maximum. Global and Planetary Changes.Google Scholar
  91. Van der Hammen (1991) Climatic Change 19: 37–47.Google Scholar
  92. Walter, H. and Box, E.O. (1976) Global classification of natural terrestrial ecosystems. Vegetatio, 32: 76–81.CrossRefGoogle Scholar
  93. Webb III, T., and Bryson, R.A. (1972) Late- and Postglacial climatic change in the northern Midwest, USA: quantitative estimates derived from fossil pollen spectra by multivariate statistical analysis. Quat. Res., 2: 70–115.Google Scholar
  94. Webb, T., Bartlein, P.J. and Kutzbach, J.E. (1987) Post-glacial climatic and vegetational changes in eastern North America since 18 Ka: comparison of the pollen record and climate model simulation. In W.F. Ruddiman & H.E. Wright (eds) North America and Adjacent Oceans during the last déglaciation. Decade of North American Geology, vol K-3. Geol. Soc. America, Boulder, Colorado.Google Scholar
  95. Woodward, F.I. (1987) “Climate and Plant Distribution”. Cambridge University Press, Cambridge.Google Scholar
  96. Woodward, F.I. (1988) Temperature and the distribution of plant species. Symposia of the Society for Experimental Biology 42: 59–75.Google Scholar
  97. Zinke, P.J., Stangenberger, A.G., Post, W.M., Emanuel, W.R., Olson, J.S., 1984: Worldwide organic soil carbon and nitrogen data, ORNL/TM-8857, Oak Ridge National Laboratory, Oak Ridge.Google Scholar
  98. Zobler, (1986) A world soil file for global climate modeling. NASA technical memorandum 87802. 32 p.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • J. Guiot
    • 1
  1. 1.UA CNRS 1152Marseille cedex 13France

Personalised recommendations