Advertisement

Modeling Long-Term Climatic Changes

  • Sylvie Joussaume
Conference paper
Part of the NATO ASI Series book series (volume 22)

Abstract

A complete hierarchy of climate models has been developed to help understand past climatic changes, from simple climate models (Taylor, this volume) to general circulation models. In the present paper, we overview the use of atmospheric general circulation models and illustrate it with some examples. In part one we give an introduction to the climate system in order to better understand the role of the various components of the climate system and of the various time scales and forcings involved in past climatic changes. More detailed papers can be found in the literature and will be referred to for further reading.

Keywords

Climate System Glacial Maximum Atmospheric General Circulation Model Continental Drift Past Climatic Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnola, J.M., D. Raynaud, Y.S. Korotkevich and C. Lorius (1987). Vostok ice core: a 160,000-year record of atmospheric CO2, Nature, 329, 408–414.CrossRefGoogle Scholar
  2. Barron, E.J. (1984). Ancient climates: investigation with climate models, Reports on Progress in Physics: 1563–1599.Google Scholar
  3. Barron, E.J. and W.M. Washington (1984). The role of geographic variables in explaining paleoclimates: Results from Cretaceous climate model sensitivity studies, J. Geophys. Res., 89: 1267–1279.CrossRefGoogle Scholar
  4. Barron, E.J. (1985). Climate models: applications for the prepleistocene. In “Paleoclimate analysis and modeling” ( A.D. Hecht, ed). Wiley, New-York: 397–421.Google Scholar
  5. Bergman K.H., A.D. Hecht and S.H. Schneider (1981) Climate models, Physics today 34: 44–51.CrossRefGoogle Scholar
  6. Broccoli, A.J. and S. Manabe (1987). The influence of continental ice, atmospheric CO2, and land albedo on the climate of the Last Glacial Maximum, Climate Dynamics, 1: 87–89.CrossRefGoogle Scholar
  7. Broecker, W.S. et G.H. Denton (1989) The role of ocean-atmosphere reorganizations in glacial cycles, Geochemica and Cosmochimica Acta, 53: 2465–2501.Google Scholar
  8. Berger, A. (1988) Milankovitch theory and climate, Rev. Geophysics, 26: 624–657.CrossRefGoogle Scholar
  9. Bonnefille, R., J.C. Roeland, and J. Guiot, Temperature and rainfall estimates for the past 40,000 years in equatorial Africa, Nature 346, 347–349, 1990.CrossRefGoogle Scholar
  10. Carissimo B.C., A.H. Oort and T.H. Von der Haar (1985) Estimating the meridional energy transports in the atmosphere and ocean, J. Phys. Oceano. 15: 82–91.CrossRefGoogle Scholar
  11. CLIMAP (Climate: Long Range Investigation, Mapping and Prediction) (1976). The surface of the Ice-age Earth, Science 191: 1131–1136.Google Scholar
  12. CLIMAP (1981). Seasonal reconstructions of the earth’s surface at the Last Glacial Maximum. Geological Society of America, Map Chart Series MC-36, Boulder, Colorado.Google Scholar
  13. COHMAP members (1988) Climatic changes of the last 18,000 years: observations and model simulations, Science, 241: 1043–1052.CrossRefGoogle Scholar
  14. Crowley, T. J. (1988) Paleoclimate Modelling, in Physically-Based Modelling and Simulation of Climate and Climatic Change- Part II, M. E. Schlesinger (ed), Kluwer Academic Publishers: 883–940.Google Scholar
  15. Crowley T. J. and G. N. North (1991), Paleoclimatology, Oxford University Press, New York.Google Scholar
  16. Frakes, L.A. (1979).Climates throughout geologic times, Elsevier.Google Scholar
  17. GARP (1975). “The physical basis of climate and climate modelling”, Garp publications series, 16, World Meteorological Organization, GenevaGoogle Scholar
  18. Gates, W.L. (1976a). Modeling the Ice Age climate, Science 191: 1138–1144.CrossRefGoogle Scholar
  19. Gates, W.L. (1976b). The numerical simulation of Ice-Age climate with a global general circulation model. J. Atmos. Sci., 33: 1844–1873.CrossRefGoogle Scholar
  20. Gates, W.L. (1981). The climate system and its portrayal by climate models: A review of basic principles: II). Modeling of climate and climatic change. In Climatic Variations and Variability: Facts and Theories ( A. Berger et al. eds), Reidel, Dordrecht, Netherlands: 435–460.Google Scholar
  21. Gates, W.L., P.R. Rowntree and Q-C. Zeng (1990), Validation of climate models, in Climate change: the IPCC Scientifica assessment, J.T. Houghton et al. (eds), Cambridge University Press: 93–130.Google Scholar
  22. Hansen, J., A. Lacis, D. Rind, G. Russell, P. Stone, I. Fung, R. Ruedy, and J. Lerner (1984) Climate sensitivity: Analysis of feedback mechanisms. In “Climate Processes and Climate Sensitivity” (J.E. Hansen and T. Takahashi, eds.), Maurice Ewing Series N° 5, American Geophysical Union, Washington D.C.: 130–163.Google Scholar
  23. Henderson-Sellers A. and K. McGuffie (1990), A climate modelling primer, J. Wiley and sons, New York.Google Scholar
  24. Imbrie, J. and J.Z. Imbrie (1979). Ices-Ages: Solving the Mystery Enslow Publishers, Short Hills, New Jersey.Google Scholar
  25. Joussaume S. (1993) Paleoclimatic tracers: an investigation using an atmospheric general circulation model under ice age conditions, part 1: desert dust, J. Geophys. Res. 98: 2767–2805.CrossRefGoogle Scholar
  26. Joussaume S. and J. Jouzel (1993) Paleoclimatic tracers: an investigation using an atmospheric general circulation model under ice age conditions, part 2: water isotopes, J. Geophys. Res. 98: 2807–2830.CrossRefGoogle Scholar
  27. Jouzel, J., C. Lorius, J.R. Petit, C. Genthon, N.I. Barkov, V.M. Kotlyakov and V.M. Petrov (1987). Vostok ice core: a continuous isotope temperature record over the last climatic cycle (160,000 years), Nature, 329: 403–408.CrossRefGoogle Scholar
  28. Jouzel J., S. Joussaume and R. Koster (1993) Use of general circulation models to follow tracers on a global scale, dans “Global changes in the perspective of the past”, J. A. Eddy et H. Oeschger (eds): 133–142.Google Scholar
  29. Jouzel, J., R.D. Koster, R.J. Suozzo and G.L. Russell, Stable water isotope behavior during the last glacial maximum: a GCM analysis, J. Geophys. Res., submitted.Google Scholar
  30. Kutzbach, J.E. (1981), Monsoon climate of the early Holocene: climatic experiment using Earth’s orbital parameters for 9000 years ago, Science 214: 59–61.CrossRefGoogle Scholar
  31. Kutzbach, J.E., (1985). Modeling of Paleoclimates, Advances in Geophysics, 28A, Academic Press: 159–196.Google Scholar
  32. Kutzbach, J. E. (1992) Modeling Earth system: changes of the past, dans Modeling the Earth System, D. Ojima (ed), UCAR Global Change Institute, vol 3: 377–404.Google Scholar
  33. Kutzbach, J. E. and R. G. Gallimore (1988) Sensitivity of a coupled atmosphere/ mixed layer ocean model to changes in orbital forcing at 9000 years BP, J. Geophys. Res., 93: 803–821.CrossRefGoogle Scholar
  34. Kutzbach, J.E. and Guetter P.J. (1986). The influence of changing orbital parameters and surface boundary conditions on climate simulations for the past 18,000 years, J. Atmos. Sci., 43: 1726–1759.CrossRefGoogle Scholar
  35. Kutzbach, J.E. and F.A. Stree-Perrot (1985) Milankovitch forcing of fluctuations in the level of tropical lakes from 18 to 0 kyr BP, Nature, 317: 130–134.CrossRefGoogle Scholar
  36. Lautenschlager, M., and K. Herterich (1989) Climatic response to ice age conditions, part 1: the atmospheric circulation, Max Planck Institute für Meteorologie Rep. 42, Hamburg (Germany).Google Scholar
  37. Lautenschlager, M., and K. Herterich (1990) Atmospheric response to ice age conditions -Climatology near the Earth’s surface, J. Geophys. Res., 95: 22,547–22, 557.Google Scholar
  38. Manabe, S. and D.G. Hahn (1977). Simulation of the tropical climate of an Ice Age, Journal of Geophysical Research, 82: 3889–3911.CrossRefGoogle Scholar
  39. Mitchell, J. F. B., N. S. Grahame, and K. J. Needham (1988) Climate simulations for 9000 years before present: seasonal variations and effects of the Laurentide ice sheet, J. Geophys. Res. 93: 8283–8303.CrossRefGoogle Scholar
  40. Mitchell, J.F.B., S. Manabe, T. Tokioka and V. Meleshko (1990), Equilibrium climate change, in Climate change: the IPCC Scientifica assessment, J.T. Houghton et al. (eds), Cambridge University Press: 131–172.Google Scholar
  41. NRC Panel on Climatic Variations, U.S. Committee for GARP (1975). “Understanding Climatic change: A Program for Action.” National Academy of Sciences, Washington, D.C.Google Scholar
  42. Peixoto J. P. and A. H. Oort (1992), Physics of climate, American Institute of Physics, New York.Google Scholar
  43. Peterson, G.M., T. Webb III, J.E. Kutzbach, T. Van Der Hammen, T.A. Wijmstra, F.A. and Street. (1979). The continental record of environmental conditions of 18,000yr BP: an initial evolution, Quaternary Research: 47–82.Google Scholar
  44. Prell, W.L. and J.E. Kutzbach (1987). Monsoon variability over the past 150,000 years, J. Geophys. Res. 92: 8411–8425.CrossRefGoogle Scholar
  45. Rind, D. and D. Peteet (1985). Terrestrial conditions at the Last Glacial Maximum and CLIMAP sea-surface temperature estimates: Are they consistent ? Quaternary Research, 24:.1–22.Google Scholar
  46. Rind, D., D. Peteet, W. Broecker, A. McIntyre and W. Ruddiman (1986). The impact of cold North Atlantic sea surface temperatures on climate: Implications for the Younger Dryas cooling (11-10K), Climate Dynamics, 1: 3–33.CrossRefGoogle Scholar
  47. Rind, D., (1987). Components of the ice age circulation. J. Geophys. Res., 92: 4241–4281.CrossRefGoogle Scholar
  48. Rind, D., D. Peteet, and G. Kukla (1989) Can Milankovitch orbital variations initiate the growth of ice sheets in a general circulation model, J. Geophys. Res. 94: 12,851–12, 871.Google Scholar
  49. Royer, J.F., M. Deque and P. Pestiaux (1984). A sensitivity experiment to astronomical forcing with a spectral GCM: simulation of the annual cycle at 125 000 BP and 115 000 BP. In Milankovitch and Climate, part 2, (A. Berger et al, eds), Reidel: 733–763.Google Scholar
  50. Ruddiman W.F. and J.E. Kutzbach (1989) Forcing of late Cenozoic northern hemisphere climate by plateau uplift in Southern Asia and the American West, J. Geophys. Res., 94: 18409–18427.CrossRefGoogle Scholar
  51. Schlesinger M.E. (1988) Physically-Based Modelling and Simulation of Climate and Climatic Change, part 1 and 2, Kluwer Academic Publishers.Google Scholar
  52. Street-Perrot, F.A., J.F.B. Mitchell, D.S. Marchand and J.S. Brunner (1990), Milankovitch and albedo forcing of the tropical monsoons: a comparison of geological evidence and numerical simulations for 9000 years BP, Transactions of the Royal Society of Edinburgh 81: 407–427CrossRefGoogle Scholar
  53. Trenberth K. E. (1992), Climate system modellin, Cambridge University Press, Cambridge.Google Scholar
  54. Washington W.M. and C.L. Parkinson (1986), An introduction to three-dimensional climate modeling, Oxford University Press, New York.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Sylvie Joussaume
    • 1
    • 2
  1. 1.Laboratoire de Modélisation du Climat et de l’Environnement DSMGif sur Yvette CedexFrance
  2. 2.Laboratoire d’Océanographie Dynamique et de Climatologie Unité mixte CNRS/Université/ORSTOMParisFrance

Personalised recommendations