Advertisement

Factors Affecting the Induction of Crassulacean Acid Metabolism in Mesembryanthemum crystallinum

  • G. E. Edwards
  • Z. Dai
  • S. H. Cheng
  • M. S. B. Ku
Part of the Ecological Studies book series (ECOLSTUD, volume 114)

Abstract

Some succulent plants initially perform C3 photosynthesis but subsequently shift to CAM after developmental or environmental changes (e.g. photoperiod, water stress, day/night temperature). Species which have a strong dependency on the environment for expression of CAM are facultative, in contrast to obligate CAM plants which tend to function in the CAM mode under all conditions (Cockburn 1985; Winter 1985). Associated with this transition in facultative species is nocturnal opening of stomata with concomitant CO2 uptake, and diurnal fluctuations of tissue acidity and malate content. Facultative CAM plants may maximize their growth by assimilating carbon via the C3 pathway when environmental conditions are less stressful, and utilize the CAM mode when environmental conditions cause more potential for water stress.

Keywords

Photosynthetic Photon Flux Density Crassulacean Acid Metabolism PSII Activity Crassulacean Acid Metabolism Plant PEPC Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cheng S-H, Edwards GE (1991) Influence of long photoperiods on plant development and expression of crassulacean acid metabolism in Mesembryanthemum crystallinum. Plant Cell Environ 14: 271–278CrossRefGoogle Scholar
  2. Chu C, Dai Z, Ku MSB, Edwards GE (1990) Induction of crassulacean acid metabolism in the facultative halophyte Mesembryanthemum crystallinum by abscisic acid. Plant Physiol 93: 1253–1260PubMedCrossRefGoogle Scholar
  3. Cockburn W (1985) Variations in photosynthetic acid metabolism in vascular plants: CAM and related phenomenon. New Phytol 101: 3–24CrossRefGoogle Scholar
  4. Dai Z, Ku MSB, Edwards GE (1990) Induction of crassulacean acid metabolism in Mesembryanthemum crystallinum by growth regulators. Plant Physiol Suppl 93: 124Google Scholar
  5. Edwards GE, Cheng S-H, Chu C, Ku MSB (1990) Environmental and hormonal dependence of induction of crassulacean acid metabolism in Mesembryanthemum crystallinum. In: Baltscheffsky M (ed) Current research in photosynthesis, vol IV. Kluwer, Dordrecht, pp 393–396Google Scholar
  6. Herppich W, Herppich M, von Willert DJ (1992) The irreversible C3 to CAM shift in well-watered and salt-stressed plants of Mesembryanthemum crystallinum is under strict ontogenetic control. Bot Acta 105: 34–40Google Scholar
  7. Holtum JAM, Winter K (1982) Activities of enzymes during induction of crassulacean acid metabolism in Mesembryanthemum crystallinum L. Planta 155: 8–16CrossRefGoogle Scholar
  8. Krall JP, Edwards GE (1992) Relationship between photosystem II activity and CO2 fixation in leaves. Physiol Plant 86: 180–187CrossRefGoogle Scholar
  9. McElwain EF, Bohnert HJ, Thomas JC (1992) Light mediates the induction of phosphoenolpyruvate carboxylase by NaCl and abscisic acid in Mesembryanthemum crystallinum. Plant Physiol 99: 1261–1264PubMedCrossRefGoogle Scholar
  10. Ogunkanmi AB, Wellburn AR, Mansfield TA (1974) Detection and preliminary identification of endogenous antitranspirants in water stressed sorghum plants. Planta 117: 293–302CrossRefGoogle Scholar
  11. Osmond CB (1978) Crassulacean acid metabolism: a curiosity in context. Annu Rev Plant Physiol 29: 379–414CrossRefGoogle Scholar
  12. Osmond CB, Allaway WG (1974) Pathways of CO2 fixation in the CAM plant Kalanchoë daigremontiana. I. Patterns of 14CO2 fixation in the light. Aust J Plant Phvsiol 1: 503–511CrossRefGoogle Scholar
  13. Osmond CB, Holtum JAM, O’Leary MH, Roeske C, Wong OC, Summons RE, Avadhani PN (1988) Regulation of malic acid metabolism in crassulacean acid metabolism plants in the dark and light: in vivo evidence for 14C-labelling patterns after 14CO2 fixation. Planta 175: 184–192CrossRefGoogle Scholar
  14. Ostrem JA, Olsen SW, Schmitt JM, Bohnert HJ (1987) Salt stress increases the level of translatable mRNA for PEPC in Mesembryanthemum crystallinum. Plant Physiol 84: 1270–1275PubMedCrossRefGoogle Scholar
  15. Phillips RD (1980) Deacidification in a plant with crassulacean acid metabolism associated with anion-cation balance. Nature 287: 727–728CrossRefGoogle Scholar
  16. Piepenbrock M, Schmitt JM (1991) Environmental control of phosphoenolpyruvate carboxylase induction in mature Mesembryanthemum crystallinum L. Plant Physiol 97: 998–1003PubMedCrossRefGoogle Scholar
  17. Ritz D, Kluge M, Veith HJ (1986) Mass-spectrometric evidence for the double-carboxylation pathway of malate synthesis by crassulacean acid metabolism plants in light. Planta 167: 284–291CrossRefGoogle Scholar
  18. Schmitt JM, Piepenbrock M (1992) Regulation of phosphoenolpyruvate carboxylase and crassulacean acid metabolism induction in Mesembryanthemum crystallinum L. by cytokinin. Plant Physiol 99: 1664–1669PubMedCrossRefGoogle Scholar
  19. Thomas JC, McElwain EF, Bohnert HJ (1992) Convergent induction of osmotic stress responses. Abscisic acid, cytokinin and the effects of NaCl. Plant Physiol 100: 416–423PubMedCrossRefGoogle Scholar
  20. Ting IP (1981) Effects of abscisic acid on CAM in Portulacaria afra. Photosynth Res 2: 39–48CrossRefGoogle Scholar
  21. Walker D (1992) Excited leaves. New Phytol 121: 325–345CrossRefGoogle Scholar
  22. Winter K (1973a) Zum Problem der Ausbildung des Crassulaceensäurestoffwechsels bei Mesembryanthemum crystallinum unter NaCl-Einfluß. Planta 109: 135–145CrossRefGoogle Scholar
  23. Winter K (1973b) CO2-Fixierungsreaktionen bei der Salzpflanze Mesembryanthemum crystallinum unter variierten Außenbedingungen. Planta 114: 75–85CrossRefGoogle Scholar
  24. Winter K (1975) Die Rolle des Crassulaceen-Säurestoffwechsels als biochemische Grundlage zur Anpassung von Halophyten an Standorte hoher Salinität. Doctoral Thesis, Technische Hochschule DarmstadtGoogle Scholar
  25. Winter K (1985) Crassulacean acid metabolism. In: Barber J, NR Baker, (eds), Photosynthetic mechanisms and the environment. Elsevier, Amsterdam, pp 329–387Google Scholar
  26. Winter K, Gademann R (1991) Daily changes in CO2 and water vapor exchange, chlorophyll fluorescence, and leaf water relations in the halophyte Mesembryanthemum crystallinum during the induction of crassulacean acid metabolism in response to high NaCl salinity. Plant Physiol 95: 768–776PubMedCrossRefGoogle Scholar
  27. Winter K, von Willert DJ (1972) NaCl-induzierter Crassulaceensäurestoffwechsel bei Mesembryanthemum crystallinum. Z Pflanzenphysiol 67: 166–170Google Scholar
  28. Winter K, Lüttge U, Winter E, Troughton JM (1978) Seasonal shift from C3 photosynthesis to crassulacean acid metabolism in Mesembryanthemum crystallinum growing in its natural environment. Oecologia 34: 225–237CrossRefGoogle Scholar
  29. Winter K, Edwards GE, Holtum JM (1981) Nocturnal accumulation of malic acid occurs in mesophyll tissue without proton transport to epidermal tissue in the inducible crassulacean acid metabolism plant Mesembryanthemum crystallinum. Plant Physiol 68: 355–357PubMedCrossRefGoogle Scholar
  30. Zeevaart JAD, Creelman RA (1988) Metabolism and physiology of abscisic acid. Annu Rev Plant Physiol Plant Mol Biol 39: 439–473CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • G. E. Edwards
    • 1
  • Z. Dai
    • 1
  • S. H. Cheng
    • 1
  • M. S. B. Ku
    • 1
  1. 1.Department of BotanyWashington State UniversityPullmanUSA

Personalised recommendations