The Tonoplast as a Target of Temperature Effects in Crassulacean Acid Metabolism

  • M. Kluge
  • M. Schomburg
Part of the Ecological Studies book series (ECOLSTUD, volume 114)


Temperature is known to be one of the most important factors bringing about phenotypic modulation of the diel and seasonal course of CAM ( e.g. Kluge and Ting 1978; Medina and Osmond 1981; Winter 1985; Lüttge 1987). Temperature may affect CAM at several different levels. There are indirect effects, for instance modulation of the diel course of gas exchange via the leaf/air water-vapour pressure difference (Lüttge 1987; von Willert et al. 1992). Temperature may also act directly through the Q10 of the various processes involved in the metabolic pathways.


Malic Acid Crassulacean Acid Metabolism Crassulacean Acid Metabolism Plant Tonoplast Membrane Passive Efflux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arata H, Iwasaki I, Kusumi K, Nishimura M (1992) Thermodynamics of malate transport across the tonoplast of leaf cells of CAM plants. Plant Cell Physiol 33: 873–880Google Scholar
  2. Berry JA, Raison JK (1981) Responses of macrophytes to temperature. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology New Series, vol 12 A. Physiological plant ecology I. Springer, Berlin Heidelberg New York, pp 277–338Google Scholar
  3. Friemert V, Heininger D, Kluge M, Ziegler H (1988) Temperature effects on malic-acid efflux from the vacuoles and on the carboxylation pathways in crassulacean acid metabolism plants. Planta 174: 453–461CrossRefGoogle Scholar
  4. Galla H-J (1988) Spektroskopische Methoden in der Biochemie. Thieme, StuttgartGoogle Scholar
  5. Kaplan A, Gale J, Poljakoff-Mayber A (1976) Resolution of net fixation of carbon dioxide into its respiration and gross fixation components in Bryophyllum daigremontianum. J Exp Bot 27: 220–230CrossRefGoogle Scholar
  6. Kliemchen A, Schomburg M, Galla H-J, Lüttge U, Kluge M (1993) Phenotypic changes in the fluidity of the tonoplast membrane of crassulacean-acid-metabolism plants in response to temperature and salinity stress. Planta 189: 403–409CrossRefGoogle Scholar
  7. Kluge M (1968) Untersuchungen über den Gaswechsel von Bryophyllum während der Lichtperiode. II. Beziehungen zwischen dem Malatgehalt des Blattgewebes und der CO2-Aufnahme. Planta 80: 359–377CrossRefGoogle Scholar
  8. Kluge M, Ting IP (1978) Crassulacean acid metabolism. Analysis of an ecological adaptation. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  9. Kluge M, Wolf H, Fischer A (1991a) Crassulacean acid metabolism: temperature effects on the lag-phase in the photosynthetic oxygen evolution occurring at the onset of the light period. Plant Physiol Biochem 29: 83–90Google Scholar
  10. Kluge M, Kliemchen A, Galla H -J (1991b) Temperature effects on crassulacean acid metabolism: EPR spectroscopy studies on the thermotropic behaviour of the tonoplast membranes of Kalanchoë daigremontiana. Bot Acta 104: 355–360Google Scholar
  11. Lüttge U (1987) Carbon dioxide and water demand: crassulacean acid metabolism (CAM), a versatile ecological adaptation exemplifying the need for integration in ecophysiological work. New Phytol 106: 593–629CrossRefGoogle Scholar
  12. Lüttge U, Smith JAC (1984) Mechanism of passive malic-acid efflux from vacuoles of the CAM plant Kalanchoë daigremontiana. J Membr Biol 81: 149–158CrossRefGoogle Scholar
  13. Marsh D (1981) Electron spin resonance: In: Grell E (ed) Membrane spectroscopy. Springer, Berlin Heidelberg New York, pp 51–142Google Scholar
  14. Medina E, Osmond CB (1981) Temperature dependence of dark CO2 fixation and acid accumulation in Kalanchoë daigremontiana. Aust J Plant Physiol 8: 641–649Google Scholar
  15. Osmond CB (1978) Crassulacean acid metabolism: a curiosity in context. Annu Rev Plant Physiol 29: 379–414CrossRefGoogle Scholar
  16. Papahadjopoulos D, Jacobsen K, Nir S, Isac T (1973) Phase transition in phospholipid vesicles. Fluorescence polarization and permeability measurements concerning the effect of temperature and cholesterol. Biochim Biophys Acta 311: 330–348PubMedCrossRefGoogle Scholar
  17. Schreier-Mucillo S, Marsh D, Smith ICP (1976) Monitoring the permeability profile of lipid membranes with spin probes. Biochemistry 172: 1–11Google Scholar
  18. Smith JAC, Bryce JH (1992) Metabolite compartmentation and transport in CAM plants. In: Tobin AK (ed) Plant organelles. Cambridge University Press, Cambridge, pp 141–167Google Scholar
  19. Smith JAC, Uribe EG, Ball E, Lüttge U (1984a) ATPase activity associated with isolated vacuoles of the crassulacean acid metabolism plant Kalanchoë daigremontiana. Planta 162: 299–304CrossRefGoogle Scholar
  20. Smith JAC, Uribe EG, Ball U, Heuer S, Lüttge U (1984b) Characterization of the vacuolar ATPase activity of the crassulacean-acid-metabolism plant Kalanchoë daigremontiana. Eur J Biochem 141: 415–420PubMedCrossRefGoogle Scholar
  21. von Willert D, Eller BM, Werger MJA, Brinckmann E, Ihlenfeldt H-D (1992) Life strategies of succulents in the desert. Cambridge University Press, CambridgeGoogle Scholar
  22. Wilkins MB (1983) The circadian rhythm of carbon dioxide metabolism in Bryophyllum: the mechanism of phase-shift induction by thermal stimuli. Planta 157: 471–480CrossRefGoogle Scholar
  23. Winter K (1985) Crassulacean acid metabolism. In: Barber J, Baker NR (eds) Photosynthetic mechanisms and the environment. Elsevier, Amsterdam, pp 329–387Google Scholar
  24. Wolfe J (1978) Chilling injury in plants - the role of membrane fluidity. Plant Cell Environ 1: 241–247CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • M. Kluge
    • 1
  • M. Schomburg
    • 1
  1. 1.Institut für BotanikTechnische Hochschule DarmstadtDarmstadtGermany

Personalised recommendations